Давление на стенки сосуда

Давление на стенки сосуда


1. Вывод формулы для расчета давления жидкости на дно сосуда

Сила давления жидкости на дно сосуда равна весу этой жидкости: Fд = Р
Вес жидкости определяем по ее массе: Р = mg
Массу вычисляем по плотности (p) жидкости: m = pV
где объем жидкости равен занятому жидкостью объему прямоугольного сосуда: V = Sh

Тогда давление жидкости на дно и стенки сосуда:


2. От каких величин и как зависит давление жидкости на дно сосуда?

Давление жидкости на дно сосуда зависит только от плотности и высоты столба жидкости.

3. Что можно рассчитать по этой формуле?

— давление жидкости на дно сосуда любой формы,
— давление жидкости на стенки сосуда на нужной высоте,
— давление внутри жидкости в любой точке во всех направлениях.


4. В каких единицах выражаются величины, входящие в формулу?

Входящие в формулу величины выражаются:
— плотность в кг/м 3 ,
— высота столба жидкости в метрах,
— g = 9,8 Н/кг,
— давление в Паскалях (Па).

5. Пример решения задачи

Задача.
Определить давление воды на дно бака, если высота столба воды в баке равна 3 м, а плотность воды — 1000 кг/м 3 .

Жидкость, находящаяся в некотором сосуде, оказывает на его дно и стенки гидростатическое давление .

Гидростатическое давление (давление жидкости) на дно сосуда (рис. 4.10) рассчитывают по формуле

где ρ — плотность жидкости; g — модуль ускорения свободного падения; h — высота столба жидкости.

В Международной системе единиц гидростатическое давление измеряется в паскалях (1 Па).

Сила гидростатического давления на дно сосуда (см. рис. 4.10) определяется как произведение:

где p гидр — гидростатическое давление на дно сосуда; ρ — плотность жидкости; g — модуль ускорения свободного падения; h — высота столба жидкости; S — площадь дна сосуда.

Гидростатическое давление (давление жидкости) на вертикальную стенку сосуда (рис. 4.11) рассчитывают по формуле

p гидр = ρ 0 g h 2 ,

где ρ — плотность жидкости; g — модуль ускорения свободного падения; h — высота вертикальной стенки сосуда (столба жидкости).

Сила гидростатического давления на вертикальную стенку сосуда (см. рис. 4.11) определяется как произведение:

F гидр = p гидр S = ρ 0 g h 2 S ,

где p гидр — гидростатическое давление на дно сосуда; ρж — плотность жидкости; g — модуль ускорения свободного падения; h — высота столба жидкости; S — площадь вертикальной стенки.

При расчете давления на дно открытого водоема (рис. 4.12) необходимо учитывать атмосферное давление:

где p атм — атмосферное давление; ρ — плотность жидкости; g — модуль ускорения свободного падения; h — глубина водоема.

Сила давления на дно открытого водоема определяется произведением:

где S — площадь дна водоема.

Гидростатическое давление жидкости на дно мензурки (рис. 4.13), отклоненной от вертикали на некоторый угол:

где ρ — плотность жидкости; g — модуль ускорения свободного падения; h 1 — высота столба жидкости при вертикальном положении мензурки; h 2 = h 1 cos α — высота столба жидкости при отклонении мензурки на угол α от ее вертикального положения.

Пример 25. Цилиндрический сосуд радиусом 10 см имеет высоту 30 см. Его заполнили до краев жидкостью плотностью 2,5 г/см 3 . Найти величину средней силы гидростатического давления, действующей на боковую поверхность цилиндра.

Решение . Средняя сила гидростатического давления, действующая на боковую поверхность цилиндра, определяется произведением:

где 〈 p 〉 — среднее гидростатическое давление на боковую поверхность цилиндра; S — площадь боковой поверхности цилиндра.

Найдем каждый из сомножителей следующим образом:

  • среднее гидростатическое давление на боковую поверхность цилиндра

где ρ — плотность жидкости, заполняющей сосуд; g — модуль ускорения свободного падения; h — высота цилиндра; т.е. среднее значение гидростатического давления определяется как давление на середину боковой поверхности цилиндра;

  • площадь боковой поверхности цилиндра

где 2π r — длина окружности; R — радиус дна цилиндра; т.е. площадь боковой поверхности цилиндра определяется как площадь прямо­угольника, одна из сторон которого равна высоте цилиндра, а другая — периметру круга (длине окружности), лежащего в его основании.

Читать еще:  Задачи лфк при инфаркте миокарда

Подстановка среднего гидростатического давления 〈 p 〉 и площади боковой поверхности цилиндра S в исходную формулу позволяет получить выражение для вычисления модуля искомой силы:

〈 F гидр 〉 = π ρ 0 g R h 2 .

Расчет дает значение:

〈 F гидр 〉 = π ⋅ 2,5 ⋅ 10 3 ⋅ 10 ⋅ 10 ⋅ 10 − 2 ⋅ ( 30 ⋅ 10 − 2 ) 2 ≈ 707 Н ≈ 0,71 кН.

Пример 26. Атмосферное давление составляет 100 кПа. Плотность воды в водоеме равна 1,0 г/см 3 . Найти глубину открытого водоема, на которой давление в четыре раза больше атмосферного.

Решение . Давление в открытом водоеме определяется формулой

где p атм — атмосферное давление; ρ — плотность воды; g — модуль ускорения свободного падения; h — искомая глубина водоема.

По условию задачи

Подстановка указанного значения в исходную формулу дает:

Выразим отсюда искомую глубину водоема

h = 3 p атм ρ 0 g

и произведем вычисление:

h = 3 ⋅ 100 ⋅ 10 3 1,0 ⋅ 10 3 ⋅ 10 = 30 м.

Таким образом, давление в открытом водоеме в 4 раза превышает атмосферное на глубине 30 м.

Давление жидкости на дно и стенки сосуда

Если жидкость помещена в сосуд любой формы, то гидростатическое давление во всех точках горизонтального дна сосуда одинаково, давление же на его боковые стенки возрастает с увеличением глубины погружения.

Гидростатическое давление р на уровне дна сосуда (рисунок 2) как и для любой точки внутри жидкости определяется уравнением Паскаля, но для всех точек дна величина (z0-z) представляет собой высоту жидкости в сосуде. Обозначив последнюю через Н, получим:

,

Таким образом сила давления Р на горизонтальное дно сосуда не зависит от формы сосуда и объема жидкости в нем. При данной плотности жидкости эта сила определяется лишь высотой столба жидкости Н и площадью Fдна сосуда:

,

Или ,

Гидростатическое давление жидкости на вертикальную стенку сосуда изменяется по высоте. Соответственно сила давления на стенку также различна по высоте сосуда: поэтому:

где h – расстояние от верхнего уровня жидкости до центра тяжести смоченной площади F стенки.

Выражение в скобках представляет собой гидростатическое давление в центре тяжести смоченной площади стенки. Поэтому сила давления на вертикальную стенку равна произведению ее смоченной площади на гидростатическое давление в центре тяжести смоченной площади стенки.

93.79.221.197 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Давление жидкости на дно и стенки сосуда

В соответствии с законом Паскаля гидростатическое давление на уровне горизонтального дна сосуда при высоте жидкости в сосуде, равной Н,

(1.7)

Отсюда следует, что абсолютное давление рна горизонтальное дно не зависит от формы сосуда и объема жидкости в нем. При данной плотности жидкости оно определяется лишь высотой столба жидкостиНи внешним давлениемр.

Сила давления жидкости Ржна дно сосуда зависит от его площадиF:

(1.8)

Общая сила давления на дно сосуда

(1.9)

Внешнее давление рпередается жидкостью каждому элементу поверхности стенки одинаково, поэтому равнодействующая внешнего давления приложена в точке центра тяжести поверхности стенки. Давление веса жидкости на стенку не одинаково по высоте: чем глубже расположен элемент стенки, тем большее давление веса жидкости он испытывает. Поэтому центр давления жидкости на вертикальную стенку расположен всегда ниже центра тяжести смоченной поверхности стенки.

Сила полного гидростатического давления на плоскую стенку равна произведению гидростатического давления в центре тяжести этой стенки и ее площади:

Читать еще:  Аспирин кардио время приема

(1.10)

где – расстояние от верхнего уровня жидкости до центра тяжести смоченной поверхности стенки; оно зависит от геометрической формы стенки.

Сила избыточного давления (собственно жидкости) Ризбна стенку

Точка приложения сил РиРизбносит название центра давленияhди может быть определена в соответствии с законами теоретической механики через момент инерции смоченной поверхности стенки

(1.11)

где Jx– момент инерции стенки относительно осиox.

Для прямоугольной стенки при уровне жидкости в сосуде, равном Н, и ширине стенкиВ

Следовательно,

Практическое использование законов гидростатики

Применив закон Паскаля к сообщающимся сосудам, можно прийти к следующим выводам.

Если сосуды (рис. 1.4 а) заполнены однородной жидкостью (одинаковой плотности), то при равновесии давление в точке 0 может быть выражено:

либо,

т.е. в сообщающихся сосудах заполняющая их однородная жидкость располагается на одинаковом уровне.

При заполнении сосудов жидкостями с различной плотностью (рис 1.4 б) в условиях равновесия давление в точке О будет

либо.

Рисунок 1.4 – Сообщающиеся сосуды, заполненные жидкостью: а– одной плотности;б– разной плотности

Следовательно , т.е.

. (1.12)

Соотношение (1.12) указывает на то, что высоты уровней жидкости, отсчитываемые от поверхности раздела, обратно пропорциональны плотностям жидкостей.

Этот принцип используется для измерения уровня жидкости в закрытых аппаратах с помощью водомерных стёкол, в жидкостных манометрах.

Если сообщающиеся сосуды заполнены одной и той же жидкостью, но давление над уровнем жидкости в них разное – р1ир2, то при равновесии

,

,

. (1.13)

Последнее выражение используется при измерении давления или разности давлений между различными точками с помощью дифференциальных U-образных манометров.

Рисунок 1.5. – К определению высоты гидравлического затвора

Этот же принцип используется для определения высоты гидравлического затвора в аппаратах, заполненных жидкостью (рис. 1.5).

На рисунке представлен сосуд, заполненный двумя жидкостями с плотностями 1и2; уровень их раздела на глубинеz1необходимо поддерживать в процессе работы постоянным с помощью гидрозатвора, представляющего собойU-образную трубку, подсоединённую снизу (на выходе жидкости из аппарата).

В соответствии с уравнением (1.12) высота гидравлического затвора в случае одинакового давления над жидкостью внутри аппарата и на выходе из затвора

. (1.14)

На использовании данного уравнения гидростатики основана работа таких простейших гидравлических машин, как гидравлический пресс, мультипликатор (для повышения давления), домкрат, подъемник и др.

Рисунок 1.6 – Схема гидравлического пресса

На рис. 1.6 показана схема гидравлического пресса. Если к поршню П1, имеюшему площадьF1, приложена силаР1, то эта сила будет передаваться на жидкость; жидкость же будет давить на поршень П2, имеющий площадьF2, с силойР2

(1.15)

так как гидростатические давления в точках площади F1и площадиF2практически равны между собой:

(1.16)

Из уравнения (1.16) следует, что при помощи пресса сила Р1увеличивается во столько раз, во сколько площадьF2больше площадиF1.

Расчет давления жидкости на дно и стенки сосуда

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

В ходе этого урока с помощью математических преобразований и логических умозаключений будет получена формула для расчета давления жидкости на дно и стенки сосуда.

Тема: Давление твердых тел, жидкостей и газов

Урок: Расчет давления жидкости на дно и стенки сосуда

1. Вывод формулы для давления жидкости на дно сосуда

Для того чтобы упростить вывод формулы для расчета давления на дно и стенки сосуда, удобнее всего использовать сосуд в форме прямоугольного параллелепипеда (Рис. 1).

Рис. 1. Сосуд для расчета давления жидкости

Площадь дна этого сосуда – S, его высота – h. Предположим, что сосуд наполнен жидкостью на всю высоту h. Чтобы определить давление на дно, нужно силу, действующую на дно, разделить на площадь дна. В нашем случае сила – это вес жидкости P, находящейся в сосуде

Читать еще:  Давление 180 на 11

Поскольку жидкость в сосуде неподвижна, ее вес равен силе тяжести, которую можно вычислить, если известна масса жидкости m

Напомним, что символом g обозначено ускорение свободного падения.

Для того чтобы найти массу жидкости, необходимо знать ее плотность ρ и объем V

Объем жидкости в сосуде мы получим, умножив площадь дна на высоту сосуда

Эти величины изначально известны. Если их по очереди подставить в приведенные выше формулы, то для вычисления давления получим следующее выражение:

В этом выражении числитель и знаменатель содержат одну и ту же величину S – площадь дна сосуда. Если на нее сократить, получится искомая формула для расчета давления жидкости на дно сосуда:

Итак, для нахождения давления необходимо умножить плотность жидкости на величину ускорения свободного падения и высоту столба жидкости.

2. Давление жидкости на стенки сосуда

Полученная выше формула называется формулой гидростатического давления. Она позволяет найти давление на дно сосуда. А как рассчитать давление на боковые стенки сосуда? Чтобы ответить на этот вопрос, вспомним, что на прошлом уроке мы установили, что давление на одном и том же уровне одинаково во всех направлениях. Это значит, давление в любой точке жидкости на заданной глубине h может быть найдено по той же формуле.

3. Анализ и примеры применения полученной формулы

Рассмотрим несколько примеров.

Возьмем два сосуда. В одном из них находится вода, а в другом – подсолнечное масло. Уровень жидкости в обоих сосудах одинаков. Одинаковым ли будет давление этих жидкостей на дно сосудов? Безусловно, нет. В формулу для расчета гидростатического давления входит плотность жидкости. Поскольку плотность подсолнечного масла меньше, чем плотность воды, а высота столба жидкостей одинакова, то масло будет оказывать на дно меньшее давление, чем вода (Рис. 2).

Рис. 2. Жидкости с различной плотностью при одной высоте столба оказывают на дно различные давления

Еще один пример. Имеются три различных по форме сосуда. В них до одного уровня налита одна и та же жидкость. Будет ли одинаковым давление на дно сосудов? Ведь масса, а значит, и вес жидкостей в сосудах различен. Да, давление будет одинаковым (Рис. 3). Ведь в формуле гидростатического давления нет никакого упоминания о форме сосуда, площади его дна и весе налитой в него жидкости. Давление определяется исключительно плотностью жидкости и высотой ее столба.

Рис. 3. Давление жидкости не зависит от формы сосуда

4. Заключение

Мы получили формулу для нахождения давления жидкости на дно и стенки сосуда. Этой формулой можно пользоваться и для расчета давления в объеме жидкости на заданной глубине. Она может быть использована для определения глубины погружения аквалангиста, при расчете конструкции батискафов, подводных лодок, для решения множества других научных и инженерных задач.

Список литературы

  1. Перышкин А. В. Физика. 7 кл. – 14-е изд., стереотип. – М.: Дрофа, 2010.
  2. Перышкин А. В. Сборник задач по физике, 7–9 кл.: 5-е изд., стереотип. – М: Издательство «Экзамен», 2010.
  3. Лукашик В. И., Иванова Е. В. Сборник задач по физике для 7–9 классов общеобразовательных учреждений. – 17-е изд. – М.: Просвещение, 2004.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Единая коллекция цифровых образовательных ресурсов (Источник).
  2. Единая коллекция цифровых образовательных ресурсов (Источник).

Домашнее задание

  1. Лукашик В. И., Иванова Е. В. Сборник задач по физике для 7–9 классов №504–513.

Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.

Ссылка на основную публикацию
Adblock
detector
Для любых предложений по сайту: [email protected]