Давление в альвеолах при вдохе

Физиология дыхания

Дыхание состоит из двух фаз: вдох и выдох. Во время вдоха сокращаются мышцы диафрагмы и межреберные мышцы. Диафрагма прогибается вниз, надавливая на органы брюшной полости и увеличивая объем грудной клетки; в результате сокращения межреберных мышц раздвигаются ребра, способствуя еще большему расширению грудной полости. В обычных условиях давление внутри альвеол во время вдоха становиться чуть меньше, чем атмосферное, примерно на -3 мм ртутного столба. Эта разница в давлении заставляет воздух поступать внутрь дыхательных путей, и таким образом уравновешивается. При выдохе происходит обратный процесс: давление в альвеолах увеличивается относительно атмосферного давления на +3 мм ртутного столба, что приводит к выходу содержащегося в них воздуха наружу.

Если на поверхности подводник выполняет произвольную гипервентиляцию, во время усиленного выдоха давление внутри альвеол может увеличиться до +100 мм ртутного столба, а при вдохе оно может упасть до –80 мм ртутного столба. Эти числа объясняют нам, почему вход и выход воздуха из легких напрямую зависит от соотношения показателей атмосферного давления и давления внутри альвеол. Так, например, когда атмосферное давление превышает альвеолярное, воздух будет переходить из области с большим давлением (внешняя) в область с меньшим давлением (альвеолы); и наоборот, если альвеолярное давление больше атмосферного, воздух будет выталкиваться из альвеол наружу.

Рефлекторная регуляция дыхания

Автоматизм дыхания регулируется клетками центральной нервной системы, объединенными в группы; это так называемые дыхательные центры, расположенные в определенных зонах мозга: в бульбарной части продолговатого мозга и варолиевом мосту.

Бульбарный дыхательный центр разделен на два отдела: инспираторный центр и экспираторный центр, отвечающие соответственно за вдох и выдох; оба они воспринимают химические импульсы, связанные с концентрацией в крови углекислого газа (CO2).

В варолиевом мосту находятся два других дыхательных центра: апнеустический центр и пневмотаксический центр, которые выполняют свои определенные функции в рефлекторной регуляции дыхания и имеют основополагающее значение для погружений на задержке дыхания. Действительно, апнеустический центр – это отправная точка инспираторного импульса, тогда как пневмотаксический центр – это орган, в котором берут свое начало тормозящие импульсы бульбарного инспираторного центра.

Мозговые дыхательные центры: бульбарный дыхательный центр устанавливает дыхательный ритм и чувствительно реагирует на любое увеличение количества CO2, отвечая ускорением дыхания до 6-7 раз.

Химическая регуляция дыхания

Основная задача дыхательной системы – поддерживать в норме уровни содержания CO2 и O2 в крови для обеспечения жизненных функций. Изменение парциального давления этих газов в организме непосредственно влияет на частоту и глубину дыхания.

Из двух этих газов наибольшее влияние на процесс дыхания, несомненно, имеет CO2, поскольку изменение именно его концентрации в крови вызывает реакцию дыхательных центров. Действительно, при любом изменении концентрации CO2 в крови, будь то увеличение или уменьшение, происходит стимуляция бульбарных химических рецепторов, приводящая к раздражению одного из двух центров в варолиевом мосту (апнеустического или пневмотаксического), которые в свою очередь посылают импульсы в один из бульбарных центров (инспираторный или экспираторный).

Из всего вышесказанного становится ясно, что увеличение концентрации CO2 в крови приводит к стимуляции дыхания (возбуждается апнеустический центр и посылает импульсы бульбарному инспираторному центру, который стимулирует дыхание). Поскольку под водой невозможно сделать вдох, увеличение CO2 в крови вызывает диафрагмальные сокращения, характеризуемые серией напряжений и расслаблений мышц диафрагмы – очевидный сигнал тревоги, обозначающий достижение предела задержки дыхания.

Уменьшение содержания CO2 в крови, как при гипервентиляции, может отсрочить появление дыхательного стимула, поскольку, как было сказано ранее, в бульбарный инспираторный центр импульс поступает только при определенном повышенном уровне концентрации этого газа, достижение которого при гипервентиляции запаздывает, потому что в начале задержки дыхания содержание CO2 в крови сильно занижено. Следовательно, гипервентиляция задерживает сигнал тревоги, используемый организмом для предупреждения о достижении предела задержки. Опасность заключается в том, что, прежде чем уровень CO2 поднимется достаточно для стимуляции дыхания, уровень кислорода может упасть ниже критического уровня. По этой причине гипервентиляция категорически запрещается; коротко говоря, она значительно понижает в организме уровень защиты и возможность предупреждения об опасности.

У ныряльщика на задержке дыхания сигналом к подъему является ощущение «кислородного голодания» – дисапноэ, появляющееся вследствие повышения уровня CO2 в крови, которое приводит к раздражению бульбарных химических рецепторов (это особые рецепторы, чувствительные к химическим изменениям крови) с целью стимуляции дыхательного центра для нового вдоха. Чтобы продлить задержку дыхания, подводник иногда сдерживает первые признаки дисапноэ, но это может привести к опасным последствиям, особенно, если подводник, как это обычно бывает, гипервентилирует легкие, ошибочно полагая, что увеличивает таким образом свой запас кислорода.

Читать еще:  Давление 140 на 105 сильная головная боль что принять

На самом деле гипервентиляция приводит к уменьшению CO2 в альвеолах и крови, что, как мы впоследствии увидим, повышает риск гипоксии (чрезмерное уменьшение парциального давления PpO2) и вызывает у человека гипоксический обморок.

В нормальных условиях перепады парциального давления O2 и CO2 в крови и в альвеолярном воздухе способствуют прохождению O2 из легких в кровь, и CO2 из крови в легкие. Во время погружения увеличение давления внутри легких способствует распространению O2, но и препятствует выходу CO2. Действительно, на глубине 10 метров внутрилегочное давление таково, что CO2 перемещается в обратном направлении: из легких в кровь, а не из крови в легкие. На глубине запас O2 в легких уменьшается гораздо быстрее, чем на поверхности, и одновременно повышается PCO2. Таким образом, сигнал к всплытию появится с запозданием относительно реального остатка кислорода, а это может вызвать у неопытного подводника, плохо знающего собственные возможности, иллюзию, что можно и дальше задерживать дыхание.

Во время всплытия давление газа быстро падает, как в легких, так и в крови. При уменьшении давления O2 до гипоксичного уровня у подводника может произойти потеря сознания с последующим обмороком и возникновением риска утопления.

Опасность еще больше увеличивается, если на поверхности подводник делал гипервентиляцию, поскольку, как мы уже видели, эта методика дает лишь небольшое увеличение парциального давления кислорода, а по большей части происходит значительное понижение парциального давления углекислого газа. Это приводит к последующему запаздыванию стимуляции дыхательных центров, дающих сигнал тревоги о приближении предела задержки дыхания, который позволяет вовремя вернуться на поверхность для дыхания.

По материалам книги Марко Барди «Учебник подводной охоты на задержке дыхания»

Плевральное давление и его изменение во время дыхания

Плевральное давление – это давление жидкости в узкой щели между легочным и париетальным листками плевры. Давление в плевральной щели ниже атмосферного (отрицательное). В норме это – 4 мм рт.ст. в конце выдоха и – 8 мм рт.ст. в конце вдоха (рис. 6).

Отрицательноедавление уменьшается в направлении сверху вниз примерно на 0,2 мм рт.ст. на каждый сантиметр, так как верхние отделы легких растянуты сильнее нижних, которые несколько сжаты под действием собственного веса.

Рис.6. Изменение внутрилегочного (I) и внутриплеврального (II) давления в процессе дыхания

Внутриплевральное давление обусловлено эластической тягой легких или стремлением легких уменьшить свой объем. На легкое атмосферный воздух действует только с одной стороны, через воздухоносные пути, поэтому оно растянуто и прижато к внутренней стороне грудной клетки. О том, что легкие находятся в растянутом состоянии, свидетельствует факт спадения их при пневмотораксе.

Пневмотораксомназывается поступление воздуха в межплевральное пространство, возникающее при проникающих ранениях грудной клетки, нарушающих герметичность плевральной полости. При этом легкие спадаются, так как внутриплевральное давление становится одинаковым с атмосферным. У человека левая и правая плевральные полости не сообщаются, и благодаря этому односторонний пневмоторакс, например слева, не ведет к прекращению легочного дыхания правого легкого. Двусторонний открытый пневмоторакс несовместим с жизнью.

Альвеолярное давление –это давление внутри альвеол. При открытой гортани и отсутствии движения воздуха давление в альвеолах равно атмосферному, которое считается нулевым в дыхательных путях (РА=0). Во время вдоха альвеолы, следуя за грудной клеткой под влиянием отрицательного плеврального давления, расширяются и альвеолярное давление становится ниже атмосферного (-1 мм рт.ст). Этого небольшого отрицательного давления достаточно, чтобы в легкие во время спокойного вдоха вошло 0,5 л воздуха. Во время выдоха происходит сдвиг альвеолярного давления в другую сторону (+1 мм рт.ст).

Транспульмональное давление –это разница между альвеолярным и внутриплевральным давлением. Оно является мерой эластических сил в легких.

Контрольные вопросы

1. Что такое плевральное давление, чему оно равно при вдохе и выдохе ?

2. Что такое пневмоторакс ?

3. Как изменяется альвеолярное давление при вдохе и выдохе ?

4. Что такое транспульмональное давление ?

93.79.221.197 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Давление в плевральной полости, его изменение при дыхании

Легкие и стенки грудной полости покрыты серозной оболочкой – плеврой, состоящей из висцерального и париетального листков. Между листками плевры находится замкнутое щелевидное пространство, содержащее серозную жидкость – плевральная полость.

Читать еще:  Аритмия после водки

Атмосферное давление, действуя на внутренние стенки альвеол через воздухоносные пути, растягивает ткань легких и прижимает висцеральный листок к париетальному, т.е. легкие постоянно находятся в растянутом состоянии. При увеличении объема грудной клетки в результате сокращения инспираторных мышц, париетальный листок последует за грудной клеткой, это приведет к уменьшению давления в плевральной щели, поэтому висцеральный листок, а вместе с ним и легкие, последуют за париетальным листком. Давление в легких станет ниже атмосферного, и воздух будет поступать в легкие – происходит вдох.

Давление в плевральной полости ниже, чем атмосферное, поэтому плевральное давление называют отрицательным, условно принимая атмосферное давление за нулевое. Чем сильнее растягиваются легкие, тем выше становится их эластическая тяга и тем ниже падает давление в плевральной полости. Величина отрицательного давления в плевральной полости равна: к концу спокойного вдоха – 5-7 мм рт.ст.. к концу максимального вдоха – 15-20 мм рт.ст., к концу спокойного выдоха – 2-3 мм рт.ст., к концу максимального выдоха — 1-2 мм рт.ст.

Отрицательное давление в плевральной полости обусловлено так называемой эластической тягой легких – силой, с которой легкие постоянно стремятся уменьшить свой объем.

Эластическая тяга легких обусловлена тремя факторами:

1) наличием в стенках альвеол большого количества эластических волокон;

2) тонусом бронхиальных мышц;

3) поверхностным натяжением пленки жидкости, покрывающей стенки альвеол.

Вещество, покрывающее внутреннюю поверхность альвеол, называется сурфактантом (рис.5).

Рис. 5. Сурфактант. Срез альвеолярной перегородки со скоплением сурфактанта.

Сурфактант — это поверхностно-активное вещество (пленка, которая состоит из фосфолипидов (90-95%), четырех специфических для него протеинов, а также небольшого количества угольного гидрата), образуется специальными клетками альвеоло-пневмоцитами II типа. Период его полураспада 12–16 часов.

Функции сурфактанта:

· при вдохе предохраняет альвеолы от перерастяжения благодаря тому, что молекулы сурфактанта расположены далеко друг от друга, что сопровождается повышением величины поверхностного натяжения;

· при выдохе предохраняет альвеолы от спадения: молекулы сурфактанта расположены близко друг к другу, в результате чего величина поверхностного натяжения снижается;

· создает возможность расправления легких при первом вдохе новорожденного;

· влияет на скорость диффузии газов между альвеолярным воздухом и кровью;

· регулирует интенсивность испарения воды с альвеолярной поверхности;

· обладает бактериостатической активностью;

· оказывает противоотечное (уменьшается выпотевание жидкости из крови в альвеолы) и антиокислительное действие (защищает стенки альвеол от повреждающего действия окислителей и перекисей).

Изучение механизма изменения объема легких с помощью модели Дондерса

Физиологический эксперимент

Изменение объема легких происходит пассивно, вследствие изменения объема грудной полости и колебаний давления в плевральной щели и внутри легких. Механизм изменения объема легких при дыхании может быть продемонстрирован с помощью модели Дондерса (рис.6), которая представляет собой стеклянный резервуар с резиновым дном. Верхнее отверстие резервуара закрыто пробкой, через которую пропущена стеклянная трубка. На конце трубки, помещенной внутри резервуара, укрепляются за трахею легкие. Через наружный конец трубки полость легких сообщается с атмосферным воздухом. При оттягивании резинового дна книзу объем резервуара увеличивается, и давление в резервуаре становится ниже атмосферного, что приводит к увеличению объема легких.

Рис.6. Модель грудной клетки – опыт Дондерса:

А- воспроизведение выдоха,

Дата добавления: 2018-04-05 ; просмотров: 606 ; ЗАКАЗАТЬ РАБОТУ

Давление в альвеолах при вдохе

Легкие являются эластической структурой, которая при отсутствии силы, поддерживающей ее в растянутом состоянии, спадается как воздушный шар и выдавливает весь содержащийся в ней воздух через трахею. При этом не существует никаких соединяющих легкие и стенки грудной клетки структур, кроме тех, которые прикрепляют их ворота к средостению. Таким образом, легкие «плавают» в грудной полости, окруженные тонким слоем плевральной жидкости, которая облегчает их движение в полости.

Постоянное всасывание излишка жидкости в лимфатические каналы создает слабое присасывание висцеральной поверхности плеврального листка легких к париетальному листку плевры стенки грудной полости, поэтому легкие как бы прилипают к грудной стенке и при ее расширении и сужении могут свободно скользить по ее внутренней поверхности.

Плевральное давление — это давление жидкости в узкой щели между легочным и париетальным листками плевры. Ранее было сказано, что в норме существует слабое присасывание листков плевры друг к другу, т.е. давление является слабо отрицательным. В начале вдоха нормальное плевральное давление составляет около -5 см вод. ст., при таком давлении легкие остаются открытыми в покое. При нормальном вдохе расширение грудной клетки тянет за собой и легкие, и развивается несколько большее отрицательное давление — около -7,5 см вод. ст.

Читать еще:  Инфаркт от удара

На рисунке показаны эти соотношения между внутриплевральным давлением и изменениями легочного объема. На нижней кривой видно, что при вдохе отрицательное давление внутри плевральной полости увеличивается от -5 до -7,5 см вод. ст., а на верхней кривой видно увеличение объема легких на 0,5 л. Во время выдоха события развиваются в обратном направлении.

Давление воздуха внутри альвеол называют альвеолярным давлением. При открытой гортани и отсутствии движения воздуха к легким или от них давление во всех частях дыхательных путей вплоть до альвеол одинаково и равняется атмосферному давлению, которое считается нулевым уровнем давления в дыхательных путях, т.е. равным 0 см вод. ст.

Во время вдоха воздух начинает входить в альвеолы только после того, как давление в альвеолах становится несколько ниже атмосферного давления (ниже нуля). На второй кривой (альвеолярное давление) на рисунке видно, что во время нормального вдоха альвеолярное давление снижается примерно до -1 см вод. ст. Этого небольшого отрицательного давления достаточно для того, чтобы в легкие во время спокойного вдоха за 2 сек вошло 0,5 л воздуха.

Во время выдоха происходит сдвиг давления в другую сторону: альвеолярное давление повышается примерно до +1 см вод. ст., при этом за 2-3 сек выдоха из легких выходит 0,5 л воздуха.

Транспульмональное давление. Обратите внимание на разницу между альвеолярным и внутриплевральным давлением на рисунке. Эту разницу называют транспульмоналъным давлением. Она представляет собой разницу между давлением внутри альвеол и давлением на внешней поверхности легких. Транспульмональное давление является мерой эластических сил в легких, стремящихся к уменьшению объема легких в любой фазе дыхания. Это давление называют давлением коллапса.

Пневмоторакс

Если в плевральную щель попадает небольшое количество воздуха, легкое частично спадается (возникает плевральная полость), но вентиляция его продолжается. Такое состояние называется закрытым пневмотораксом. Через некоторое время воздух из плевральной полости всасывается и легкое расправляется.

При вскрытии грудной клетки, например при ранениях или внутригрудных операциях, давление вокруг легкого становится равным атмосферному и легкое спадается полностью. Его вентиляция прекращается несмотря на сокращения дыхательных мышц.

Такой пневмоторакс называется открытым. Двусторонний открытый пневмоторакс без экстренной помощи приводит к смерти. Необходимо либо срочно начать искусственное дыхание ритмическим нагнетанием воздуха в легкие через трахею, либо немедленно герметизировать плевральную полость.

Изменение давления в альвеолах

Давление в альвеолах при открытых воздухоносных путях и отсутствии тока воздуха через них равно атмосферному. Когда давление в альвеолах снижается, происходит вдох. Степень снижения давления зависит от силы сокращения инспираторных мышц и сопротивления воздухоносных путей току воздуха (аэродинамическое сопротивление).

Прохождение воздуха по воздухоносным путям требует затраты энергии на преодоление сил трения воздуха о стенки воздухоносных путей, а также сил трения между слоями воздуха. Вследствие этого происходит падение давления по ходу воздухоносных путей.

Во время выдоха давление в альвеолах, наоборот, становится выше атмосферного.

При спокойном дыхании давление в альвеолах ниже атмосферного. Если воздухоносные пути закрыты (при максимальном сопротивлении), попытка произвести вдох может сопровождаться снижением давления в легких до —70 мм рт. ст. Попытка сделать сильный выдох в таких условиях вызывает рост давления в альвеолах до 100 мм рт. ст.

Сопротивление воздухоносных путей току воздуха определяют в соответствии с уравнением Пуазейля. Аэродинамическое сопротивление меняется в течение дыхательного цикла: во время вдоха оно снижается, во время выдоха увеличивается в результате изменения просвета голосовой щели и бронхов.

При спокойном дыхании человек вдыхает и выдыхает около 500 мл (от 300 до 800 мл) воздуха; этот объем воздуха называется дыхательным объемом. Сверх него при глубоком вдохе человек может вдохнуть еще приблизительно 3000 мл воздуха (резервный объем вдоха). После спокойного выдоха человек способен выдохнуть около 1300 мл (резервный объем выдоха).

Сумма указанных объемов составляет жизненную емкость легких (ЖЕЛ): 500 + 3000 + 1300=4800 мл. Дыхательный объем — количественное выражение глубины дыхания. Жизненная емкость легких определяет собой максимальный объем воздуха, который может быть введен или выведен из легких в течение одного вдоха или выдоха.

Указанные объемы воздуха определяют при помощи спирометров разной конструкции.

Жизненная емкость легких несколько выше у мужчин (4000—5500 мл), чем у женщин (3000—4500 мл). Она больше в положении стоя, чем в положении сидя или лежа.

Ссылка на основную публикацию
Adblock
detector