В чем измеряется гидравлическое давление

Гидростатическое давление и его свойства. Единицы измерения.

На жидкое тело могут действовать две категории сил: по­верхностные и массовые. Поверхностные силы — это такие силы, которые ока­зывают действие на поверхность жидкого тела, например силы давления поршня или плунжера насоса, атмосферное давление и др.

Массовые, или объемные, силы — это силы тяжести, инерции и центробежные силы, которые в однородной жидкости распределены по всему объему жидкого тела. При воздействии поверхностных и массовых сил в жидкости возникают внутрен­ние силы, вызывающие внутри жидкого тела напряжение, ана­логичное напряжению, возникающему в твердых телах при воз­действии на них внешних сил. Находящееся в состоянии равновесия жидкое тело (рис. 2, а) разделим мысленно плоскостью ВС на две равные части. Верх­няя часть / жидкого тела будет оказывать давление на нижнюю часть //. Для сохранения равновесия нижней части мысленно приложим силу Р, с которой верхняя часть действует на нижнюю (рис. 2, б). Силу Р называют силой гидростатического давления. Если разделить эту силу Р на площадь w, то получим среднее гидростатическое давление pср, т. е.

Таким образом, гидростатическое давление в точке есть пре­дел отношения при ‘условии, что стремится к нулю. Гидростатическое давление р измеряют в Па или МПа. Гидро­статическое давление обладает двумя основными свойствами. Первое свойство. Гидростатическое давление действует всегда по внутренней нормали, направленной к площадке действия.Второе свойство.Гидростатическое давление не зависит от ориентации (угла наклон а) площадки действия и в различных направлениях одина­ково по величине.

Закон Паскаля

Рассмотрим сосуд, наполненный жидкостью (рис. 7, а). На свободной поверхности жидкости при помощи поршня, находя­щегося в положении /—/, создано давление, равное р. Абсолют­ное давление в точке А будет pA=Po+pgh- Переместим поршень в положение //—//. Давление на свободной поверхности жидко­сти в сосуде увеличится на величину Др и будет равно р + &р. Тогда абсолютное давление в точке А будет р = p + A.p + pgh. Следовательно, при изменении давления на величину Д/? на свободной поверхности жидкости на эту же величину изменится давление и в точке А. Это значит, что если жидкость на­ходится в состоянии покоя, то изменение давле­ния на любой внешней поверхности, возникаю­щее от действия внешних сил, передается без и з -менениявовсе точки объема, за ним аемого дан­ной жидкостью. В этом и заключается сущность закона Паскаля, широко применяемого при расчете и конструировании гидравлических машин. Например, конструкцию гидравлического пресса, предназначенного для увеличения сжимающей силы, рассчитывают с использованием закона Паскаля, да и сама идея конструкции гидравлического,пресса принадлежит Паскалю. На рис. 7, б показана принципиальная схема гидропресса. Со­гласно схеме на малый поршень действует сила Р, на боль­шой pz- Система заполнена однородной жидкостью. Гидравличе­ское давление, создаваемое приложенной пилой Р,. в правом цилиндре равно /?1 = PI/Qb в левом цилиндре Но, по закону Паскаля, р = р2,

следовательно,

откуда суммарная сила, действующая на большой поршень, равна

(50)

Разница в массе поршней нами не учитывается. С учетом коэффициента полезного действия

(51)

Обычно КПД, который учитывает силы трения в манжетах при движении поршней, принимают равным т] = 0,75.. .0,80.

Таким образом, сжимающее усилие Р2, действующее на боль­шой поршень, возрастает во столько раз, во сколько площадь большого поршня больше площади малого поршня без учета КПД гидропресса.

93.79.221.197 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Ответы к экзаменам по курсу гидравлика — Единицы измерения давления

Ответы к экзаменам по курсу гидравлика — Единицы измерения давления

Единицы измерения давления.

Единицей измерения давления используется техническая атмосфера, равная давлению в 1 кгс на 1 см². Техническая атмосфера обозначается ат или кгс/см². В качестве единиц измерения давления (разрежения) применяют также метр и миллиметр водяного столба и миллиметр ртутного столба.

Соотношения между этими единицами:

1 кгс/см² = 735,56 мм рт. ст. (при 0 °С);
1 кгс/см² = 10 м вод. ст. (при 4 °С);
1 кгс/см² = 10 000 мм вод. ст. = 10 000 кгс/м².

В науке, а иногда и в технике за единицу давления принимается физическая атмосфера, обозначаемая атм и равная давлению столба ртути высотой 760 мм рт. ст. при 0 °С.

Соотношения между технической и физической атмосферами следующие:

1 кгс/см² = 0,9678 атм;
1 атм = 1,0332 кгс/см² = 10,332 м вод. ст.

В системе СИ эта единица названа паскаль (Па).

Соотношения паскаля со старыми единицами

1 мм вод. ст. = 9,80665 Па ≈ 9,8 Па;
1 мм рт. ст. = 133,322 Па ≈ 133,3 Па;
1 кгс/см² = 98 066,5 Па;
1 атм = 101 325 Па.

Определение величины равнодействующей силы давления на плоские и криволинейные поверхности.

Сила давления жидкости па плоскую поверхность

Из основного закона гидростатики величина давления р определяется глу­биной погружения точки под уровень свободной поверхности h жидкости и величиной плотности жидкости р.

Для горизонтальной поверхности величина давления одинакова во всех точках этой поверхно­сти, т.к.:

— Сила давления жидкости на горизонтальную поверхность (дно сосу­да). «Гидравлический пара­докс» (см. рисунок), здесь величины силы давления на дно всех сосудов одинаковы, независимо от формы стенок сосудов и их физической высоты, т.к. площади доньев у всех сосудов оди­наковы, одинаковы и величины давлений.

Сила давления на наклонную поверхность . Примером такой поверхности может служить наклонная стенка сосуда. Для вывода уравнения и вычисления силы давления на стенку выберем систему координат: ось ОХ вдоль пересечения плоскости свободной поверхности жидкости с на­клонной стенкой, а ось OZ вдоль этой стенки перпендикулярно оси ОХ. В качестве координатной плоскости XOZ будет выступать сама наклонная стенка. На плос­кости стенки выделим малую площадку , которую можем считать горизонтальной (мала размером). Величина давления на глубине площадки будет равна: где: h — глубина погружения площадки относительно свободной поверхности жидкости (по вертика­ли). Сила давления dP на площадку:

Для определения силы давления на всю смоченную часть наклонной стенки (часть площади стенки сосуда, расположенная ниже уровня свободной поверхности жидкости) необходимо проинтегрировать это урав­нение по всей смоченной части площади стенки S .

Интеграл представляет собой статический момент площади S относительно оси ОХ. Он, как известно, равен произведению этой площади на координату её центра тяжести zc. Тогда окончательно: — Сила давления на наклонную плоскую поверхность. Сила давления на плоскую стенку кроме величины и направления характеризуется также и точкой приложения этой силы, которая называется центром дав­ления.

Читать еще:  Восстановление после гипертонического криза в домашних условиях

Гидростатическое давление: формула и свойства.

Содержание

Гидростатикой называется раздел гидравлики, в котором изучаются законы равновесия жидкостей и рассматривается практическое приложение этих законов. Для того, чтобы понять гидростатику необходимо определиться в некоторых понятиях и определениях.

Закон Паскаля для гидростатики.

В 1653 году французским ученым Б. Паскалем был открыт закон, который принято называть основным законом гидростатики.

Давление на поверхность жидкости, произведенное внешними силами, передается в жидкости одинаково во всех направлениях.

Закон Паскаля легко понимается если взглянуть на молекулярное строение вещества. В жидкостях и газах молекулы обладают относительной свободой, они способны перемещаться друг относительно друга, в отличии от твердых тел. В твердых телах молекулы собраны в кристаллические решетки.

Относительная свобода, которой обладают молекулы жидкостей и газов, позволяет передавать давление производимое на жидкость или газ не только в направлении действия силы, но и во всех других направлениях.

Закон Паскаля для гидростатики нашел широкое распространение в промышленности. На этом законе основана работа гидроавтоматики, управляющей станками с ЧПУ, автомобилями и самолетами и многих других гидравлических машин.

Определение и формула гидростатического давления

Из описанного выше закона Паскаля вытекает, что:

Гидростатическое давление – это давление, производимое на жидкость силой тяжести.

Величина гидростатического давления не зависит от формы сосуда, в котором находится жидкость и определяется произведением

ρ – плотность жидкости

g – ускорение свободного падения

h – глубина, на которой определяется давление.

Для иллюстрации этой формулы посмотрим на 3 сосуда разной формы.

Во всех трёх случаях давление жидкости на дно сосуда одинаково.

Полное давление жидкости в сосуде равно

P0 – давление на поверхности жидкости. В большинстве случаев принимается равным атмосферному.

Сила гидростатического давления

Выделим в жидкости, находящейся в равновесии, некоторый объем, затем рассечем его произвольной плоскостью АВ на две части и мысленно отбросим одну из этих частей, например верхнюю. При этом мы должны приложить к плоскости АВ силы, действие которых будет эквивалентно действию отброшенной верхней части объема на оставшуюся нижнюю его часть.

Рассмотрим в плоскости сечения АВ замкнутый контур площадью ΔF, включающий в себя некоторую произвольную точку a. Пусть на эту площадь воздействует сила ΔP.

Тогда гидростатическое давление формула которого выглядит как

представлет собой силу, действующую на единицу площади, будет называться средним гидростатическим давлением или средним напряжением гидростатического давления по площади ΔF.

Истинное давление в разных точках этой площади может быть разным: в одних точках оно может быть больше, в других – меньше среднего гидростатического давления. Очевидно, что в общем случае среднее давление Рср будет тем меньше отличаться от истинного давления в точке а, чем меньше будет площадь ΔF, и в пределе среднее давление совпадет с истинным давлением в точке а.

Для жидкостей, находящихся в равновесии, гидростатическое давление жидкости аналогично напряжению сжатия в твердых телах.

Единицей измерения давления в системе СИ является ньютон на квадратный метр (Н/м 2 ) – её называют паскалем (Па). Поскольку величина паскаля очень мала, часто применяют укрупненные единицы:

килоньютон на квадратный метр – 1кН/м 2 = 1*10 3 Н/м 2

меганьютон на квадратный метр – 1МН/м 2 = 1*10 6 Н/м 2

Давление равное 1*10 5 Н/м 2 называется баром (бар).

В физической системе единицей намерения давления является дина на квадратный сантиметр (дина/м 2 ), в технической системе – килограмм-сила на квадратный метр (кгс/м 2 ). Практически давление жидкости обычно измеряют в кгс/см 2 , а давление равное 1 кгс/см 2 называется технической атмосферой (ат).

Между всеми этими единицами существует следующее соотношение:

1ат = 1 кгс/см 2 = 0,98 бар = 0,98 * 10 5 Па = 0,98 * 10 6 дин = 10 4 кгс/м 2

Следует помнить что между технической атмосферой (ат) и атмосферой физической (Ат) существует разница. 1 Ат = 1,033 кгс/см 2 и представляет собой нормальное давление на уровне моря. Атмосферное давление зависит от высоты расположения места над уровнем моря.

Измерение гидростатического давления

На практике применяют различные способы учета величины гидростатического давления. Если при определении гидростатического давления принимается во внимание и атмосферное давление, действующее на свободную поверхность жидкости, его называют полным или абсолютным. В этом случае величина давления обычно измеряется в технических атмосферах, называемых абсолютными (ата).

Часто при учете давления атмосферное давление на свободной поверхности не принимают во внимание, определяя так называемое избыточное гидростатическое давление, или манометрическое давление, т.е. давление сверх атмосферного.

Манометрическое давление определяют как разность между абсолютным давлением в жидкости и давлением атмосферным.

Рман = Рабс – Ратм

и измеряют также в технических атмосферах, называемых в этом случае избыточными.

Случается, что гидростатическое давление в жидкости оказывается меньше атмосферного. В этом случае говорят, что в жидкости имеется вакуум. Величина вакуума равняется разнице между атмосферным и и абсолютным давлением в жидкости

Рвак = Ратм – Рабс

и измеряется в пределах от нуля до атмосферы.

Свойства гидростатического давления

Гидростатическое давление воды обладает двумя основными свойствами:
Оно направлено по внутренней нормали к площади, на которую действует;
Величина давления в данной точке не зависит от направления (т.е. от ориентированности в пространстве площадки, на которой находится точка).

Первое свойство является простым следствием того положения, что в покоящейся жидкости отсутствуют касательные и растягивающие усилия.

Предположим, что гидростатическое давление направлено не по нормали, т.е. не перпендикулярно, а под некоторым углом к площадке. Тогда его можно разложить на две составляющие – нормальную и касательную. Наличие касательной составляющей из-за отсутствия в покоящейся жидкости сил сопротивления сдвигающим усилиям неизбежно привело бы к движению жидкости вдоль площадки, т.е. нарушило бы её равновесие.

Поэтому единственным возможным направлением гидростатического давления является его направление по нормали к площадке.

Если предположить что гидростатическое давление направлено не по внутренней, а по внешней нормали, т.е. не внутрь рассматриваемого объекта а наружу от него, то вследствие того, что жидкость не оказывает сопротивления растягивающим усилиям – частицы жидкости пришли бы в движение и её равновесие было бы нарушено.

Читать еще:  Давление 106 на 70 что делать

Следовательно, гидростатическое давление воды всегда направлено по внутренней нормали и представляет собой сжимающее давление.

Из этого же правило следует, что если измениться давление в какой-то точке, то на такую же величину измениться давление в любой другой точке этой жидкости. В этом заключается закон Паскаля, который формулируется следующим образом: Давление производимое на жидкость, передается внутри жидкости во все стороны с одинаковой силой.

На применение этого закона основываются действие машин, работающих под гидростатическим давлением.

Ещё одним фактором влияющим на величину давления является вязкость жидкости, которой до недавнего времени приято было пренебрегать. С появлением агрегатов работающих на высоком давлении вязкость пришлось так же учитывать. Оказалось, что при изменении давления, вязкость некоторых жидкостей, таких как масла, может изменяться в несколько раз. А это уже определяет возможность использовать такие жидкости в качестве рабочей среды.

Гидростатическое давление и его характеристика

Что такое гидростатическое давление? Какими характеристиками оно обладает и в каких единицах измеряется? Если вы любите исследовать физические величины, тогда смело читайте статью до конца.

Общее представление о гидростатическом давлении

Гидростатическое давление – это сила давления водного столба над определенным, условно обозначенным уровнем. Полная удобная подвижность частиц капель жидкости или газа позволяет, находясь в состоянии покоя, передать равносильно давление по всем направлениям. Таким образом, давление воздействует на любую часть плоскостей, что ограничивают жидкость, при использовании силы P, которая по своей характеристике пропорциональна размеру данной поверхности либо направлена по нормали в ее сторону. Гидростатическим давлением называют отношение между Pw, иначе говоря, это давление, создаваемое р на поверхности, равной единице.

В итоге мы получаем довольно легкое уравнение P = pw, которое позволяет точно вычислять давление на конкретную поверхность чего-либо, например сосуда, газа или жидкостных капель, что находятся в условиях, создающих очень малое давление в сравнении с тем, что передается снаружи. К этому аспекту явлений можно отнести практически любые случаи газового давления и расчетов давления воды, находящейся в гидравлическом прессе или аккумуляторе.

Блез Паскаль открыл и описал это жидкостное свойство в 1653-м, однако Симон Стевин знал и использовал это понятие немного раньше.

Разновидности

Виды гидростатического давления:

  • Абсолютное, или полное – это давление в любых произвольно взятых точках или жидкостном сечении, равному наружной силе д-ния на ее свободной поверхность P и сложенному со столбом жидкостного давления pgh. Показатель основания жидкостного давления при этом равен единице измерения площади, а высота соответствует глубине, на которую погружена точка или жидкостное сечение:
  • Манометрический, или избыточный, вид давления – это величина разности между атмосферным д-нием и гидростатическим д-нием абсолютного типа. Оно характеризует уровень избытка в сравнении с атмосферным:
  • Степень разности между давлением атмосферного и абсолютного типа называют вакуумметрическим д-нием. Ее роль заключается в указании нехватки давления до уровня атмосферного.

Способы вычисления давления в жидкостях

Гидростатическое давление присутствует в любой жидкости и обуславливается весом самого вещества p = G/S = mg/S. Известно, что m = pV, тогда p = pgV/S, и с учетом того факта, что V = Sh, мы получаем следующую формулу:

Показатель жидкостной плотности p напрямую зависит от уровня температуры. Для вычисления, требующих невероятной точности, используют специальную формулу. Гидростатическим давлением также называют сумму силы давления, определяющегося величиной веса жидкостного столба и поршневым давлением.

Единицы измерения

Гидростатическое давление, как и другие величины, имеет определенную единицу измерения. На практике его измеряют в кг/см 2 . Если давление очень большое, то его могут выражать при помощи атмосфер, где 1 атмосфера равна давлению в 76 см рт. ст. при нулевой температуре, в условиях широты, где УСТ = 0.0634 кг на 1 см 2 равна 6.21·10 6 дин на поверхность 1 см 2 . Таким образом, получаем 1 атмосферу, равную 1,0333 кг/см 2 , то есть 1,0135·106 дин на 1 см 2 для широтного показателя Парижа. А также гидростатическое давление можно измерять при помощи его парадокса.

Парадокс гидростатического характера и связь с законом Паскаля

Гидростатическое давление и его свойства могут изменяться, что связано с попытками произведения вычислений силы д-ния в определенных обстоятельствах. Сложнее производить вычисления, если необходимо узнать силу давления, оказываемую на негоризонтальные стены сосуда. Причиной давления здесь выступает вес жидкостного столба с бесконечно малой частицей в основании, которая рассматривается на поверхности. Высота выступает вертикальным расстоянием всех таких частиц от свободной жидкостной поверхности. Эти расстояния не будут постоянными для боковых стен. Здесь необходимо использовать, при суммировании боковых стенок, правила интегральных исчислений, давления упирающегося на любые элементы, находящиеся в горизонтальном положении. С учетом всего вышесказанного получаем правило, при котором давление тяжелых жидкостей на любую плоскую стену соответствует весу жидкостного столба, имеющего в качестве основания площадь данной стены, а высота является вертикальным расстоянием ее центра тяжести, удаленного от жидкостной поверхности свободного типа. Из этого следует, что давление на дно сосуда зависит лишь от размера его поверхности, высоты жидкостного уровня, налитого в сам сосуд, и от показателя плотности, а вот форма сосуда не влияет на давление. Такое явление называют гидростатическим парадоксом.

Этот парадокс был доказан Паскалем в опытах с сосудами, расширяющимися кверху и книзу. В первом сосуде избыточный вес жидкостей поддерживали боковые стены, и передавался он при помощи стен, не действуя при этом на дно. А во втором сосуде давление действовало на боковые стены по направлению от низа к верху, и, как результат, облегчало вес на величину, равную недостатку жидкости.

Подводим итоги

В целом гидростатическое давление является важной характеристикой жидкостей, используемой человеком во множестве расчетов и при работе с различными приборами, например насосами. Эта величина имеет некоторые особенности, раскрывающиеся в парадоксе гидростатического давления. Она представлена в трех видах и имеет свою единицу измерения.

Средства измерения давления в гидравлических системах.

В процессе эксплуатации гидроприводов применяют средства измерения, имеющие нормированные метрологические свойства и предназначенные для нахождения значений физических величин, характеризующих работу этих гидроприводов.

Применяемые средства измерения характеризуются ценой деления, абсолютной погрешностью и классом точности.

Читать еще:  69 ударов в минуту пульс

Цена деления шкалы — разность значений величин, соответствующих двум соседним отметкам шкалы прибора.

Абсолютная погрешность — разность между показанием прибора и истинным значением измеряемой величины.

Класс точности — обобщенная характеристика средств измерения, определяемая отношением максимально допустимой погрешности ? к конечному значению n шкалы прибора, выраженным в процентах, т.е.

При эксплуатации и испытаниях гидроприводов и отдельных гидроагрегатов измеряют давление, расход и температуру рабочей жидкости, скорость движения, усилия, крутящие моменты, развиваемые на выходных звеньях гидродвигателей.

Измерение давления. Для измерения избыточного давления применяют манометры. Манометры по своему назначению подразделяются на приборы общего назначения (типа М, МТ, ОБМ) и образцовые (типа МО). Рабочие манометры и общего назначения имеют класс точности 1; 1,5; 2,5 и 4. Образцовые манометры имеют более высокие класс точности (0,15; 0,25; 0,4), их применяют для поверки манометров общего назначения и в испытательных стендах.

По принципу действия манометры подразделяются на жидкостные, грузопоршневые, деформационные и электрические.

Жидкостные манометры применяют для измерений небольших давлений и чаще всего представляют собой стеклянную трубку, присоединенную к резервуару (рис.1).

Грузопоршневые манометры (рис.2), состоящие из цилиндра 1 и поршня 2, преобразуют давление рабочей жидкости в усилие, развиваемое поршнем.

Деформационные манометры получили в гидроприводе наибольшее распространение. Принцип их работы основан на зависимости деформации чувствительного элемента (мембраны, трубчатой пружины, сильфона) от измеряемого давления.

Рис.3. Деформационные манометры:
а — мембранный; б — мембранный с двойной мембраной;
в — с консольной балкой; г — сильфонный;
1 — мембрана; 2, 4 — активный и компенсирующий тензорезистор; 3 — консольная балочка

В мембранный манометрах давление со стороны рабочей жидкости передается на мембрану (рис.3, а, б, в). На мембране установлены тензорезисторы, которые изгибаясь вместе с мембраной изменяют свое электрическое сопротивление. Изменение сопротивления регистрируется электрическими приборами и преобразуется в показания значения соответствующего давления.

В сильфонных манометрах (рис.3, г) давление рабочей жидкости приводит к растяжению гофрированной упругой трубки пропорционально давлению.

Мембранный и сильфонные манометры предназначены для измерения небольших давлений.

Пружинный манометр (рис.3) имеет пружину в виде изогнутой латунной трубки (трубка Бурдона) 1 эллиптического поперечного сечения. Верхний конец трубки запаян, а нижний припаян к штуцеру 2, через который манометр присоединяется в гидросистему. При заполнении трубки рабочей средой под давлением она стремится выпрямиться. Через рычажный механизм 3, усиливающий деформацию трубки, перемещение ее свободного конца передается на стрелку 4, расположенную по центру шкалы прибора. Пружинные манометры просты по конструкции, ими можно измерять давление в широком диапазоне.

Рис.3. Деформационные манометры:
а — мембранный; б — мембранный с двойной мембраной;
в — с консольной балкой; г — сильфонный;
1 — мембрана; 2, 4 — активный и компенсирующий тензорезистор; 3 — консольная балочка

Шкала всех манометров градуируется в паскалях или мегапаскалях. На старых образцах давление указывается в кгс/см2. На шкале наносится заводское обозначение; класс точности; номер ГОСТ; год выпуска; номер манометра и название рабочей среды (жидкость, пар, газ), в которой измеряется давление.

Электрические манометры применяют для непрерывного измерения мгновенного значения давления в комплекте с осциллографами. Чувствительным элементом этих приборов может служить трубка Бурдона (рис.4, а) или тонкостенный полый стакан (рис.4, б) с наклеенными на их стенки тензодатчиками.

Датчики с манганиновой проволокой (рис.4, в), электрическое сопротивление которой меняется при объемном сжатии, применяются для замера давления.

Для замера пульсаций давления применяют пьезоэлектрические датчики (рис.4, г), регистрирующие только динамическую составляющую давления.

Рис.4. Электрические манометры:
а — с трубкой Бурдона; б — тонкостенный цилиндрический датчик с
наклеенными тензодатчиками; в — с манганиновой проволокой;
г — пьезоэлектрический; 1 — трубка Бурдона; 2 — тензодатчики;
3 — тонкостенный стакан; 4 — манганиновый датчик; 5 — узкая щель;
6 — корпус; 7 — заливка эпоксидной смолой;
8 — пьезоэлектрический датчик; 9 — перегородка

Измерение расхода. Для определения подачи рабочей жидкости используют расходомеры. По принципу действия различают расходомеры: счетчиковые, струйные, электромагнитные, ультразвуковые, тахометрические, а также основанные на перепаде давления и др.

Рис.5. Схемы расходомеров:
а — струйный; б — ультразвуковой; в — турбинный; г — тепловой;
1 — мембрана; 2 — неподвижный электрод; 3 — трубопровод;
4 — направляющая; 5 — корпус; 6 — подшипник; 7 — турбина; 8 — успокоитель;
9 — преобразователь сигнала; 10 — излучатель сигнала;
11 — дополнительный излучатель; 12 — приемник;
13 — дополнительный приемник; 14 — пластина;
15 — термопара; 16 — теплоизоляция; 17 — нагреватель

В струйных расходомерах (рис.5, а) на пути рабочей жидкости в трубопроводе 3 располагается некоторое препятствие типа плоской мембраны 1, отклонение которой является функцией скорости струи, а регистрирующий ток — функцией взаимного положения мембраны 3 и неподвижного электрода 2.

Тахометрические турбинные расходомеры (рис.5, в) работают с малогабаритными электронными преобразователями. В таком расходомере поток рабочей жидкости приводит во вращение турбину, каждый проход лопасти которой наводит импульс ЭДС в обмотке индукционного преобразователя. Скорость потока определяется через частоту электрических импульсов на выходе преобразователя путем как непосредственного измерения, так и выводом на цифровые приборы или преобразованием в аналоговый сигнал. Такими расходомерами можно измерять расходы до 360 л/мин.

Ультразвуковые расходомеры (рис.5, б) работают на основе ультразвуковых колебаний. Благодаря эффекту Доплера частота и фаза ультразвукового сигнала, проходящего от излучателя 11 к приемнику 13, будет изменяться в функции скорости протекания рабочей жидкости. Введение дополнительной пары излучатель 10 — приемник 12 обеспечивает компенсацию температурной нестабильности.

Тепловой неконтактный расходомер применяется для определения подачи насосом рабочей жидкости без разборки гидросистемы (рис.5, г). Он имеет стабилизированный источник питания (СИП), датчик и измерительный прибор (ИП). СИП обеспечивает питание нагревателя и ИП, включающий в себя дифференциальную термопару, позволяет определить скорость потока рабочей жидкости по разности температур входящего потока рабочей жидкости и нагревателя.

Измерение температуры. Температуру рабочей жидкости в гидроприводах измеряют термометрами, которые по принципу действия делятся на термометры расширения, сопротивления и теплоэлектрические. При диагностировании гидроприводов наибольшее распространение получили термометры расширения, имеющие границы измерений от -60 до +250 С.

Измерение крутящего момента на валах гидромашин определяют балансирными динамометрами или торсионометрами, первые из которых получили наибольшее распространение. Балансирные динамометры бывают электрические, тормозные, гидравлические и механические.

Ссылка на основную публикацию
Adblock
detector