Датчики измерения давления в гидроцилиндре

Простейшие методы диагностики гидросистем машин

Техническое обслуживание гидросистем машин должно осуществляться высококвалифицированными специалистами с помощью высокоточных диагностических приборов, выводящих сведения о неполадках на компьютер. Последний должен указывать методы устранения неисправностей. Такой подход находит все более широкое применение.

Однако, даже если рядом нет грамотного специалиста, а из средств диагностирования имеются только простые приборы измерения, определить причины неисправности гидросистемы можно достаточно точно и быстро, используя логический метод их нахождения. При этом необходимо хорошо понимать основные принципы гидравлики и знать основы работы и устройства каждого элемента гидропривода.

Как остановить экскаватор?

Источник фото: exkavator.ru Определить причины неисправности гидросистемы можно, используя логический метод их нахождения

Если возникшая неисправность привела к потере функций машины, или (и) негативно сказывается на безопасности ее эксплуатации, или наносит вред окружающей среде (например, обрыв рукава высокого давления), то машину следует немедленно остановить.

Для обеспечения безопасности при остановке машины необходимо провести следующие мероприятия:

  • опустить все подвешенные рабочие органы машины или зафиксировать их механическим способом;
  • сбросить давление во всей гидросистеме;
  • разрядить все гидроаккумуляторы;
  • снять давление с преобразователей давления;
  • выключить электрическую управляющую систему;
  • отключить электрическое питание.

При этом следует учесть, что рабочие жидкости, используемые в гидроприводах, являются малосжимаемыми по сравнению с газом и при снижении давления расширяются незначительно. Однако в тех местах гидросистемы, где может находиться сжатый газ (из-за недостаточной деаэрации или при подключенном гидроаккумуляторе), уменьшать давление следует очень осторожно.

Как подойти к диагностике гидросистемы?

Неисправности гидравлической системы можно разделить на два вида:

  • неисправности, не влияющие (безусловно, до определенного времени) на функционирование машины, — функциональная неполадка в гидросистеме (например, повышение утечки, температуры и т.п.);
  • неисправности, влияющие на функционирование машины, — функциональная неполадка в машине (например, снижение производительности).

Поиск разных видов неисправностей выполняется по разным алгоритмам.

Возможны случаи, когда одна и та же неисправность (например, насоса) может привести к функциональной неполадке и в машине (снизив производительность), и в гидросистеме (повысив уровень шума).

Опыт показал, что поиск неисправностей предпочтительно начинать с основных проблем и прорабатывать тестовые процедуры, учитывая такие признаки, как повышение температуры, шума, утечки и т.п., в качестве «путеводных нитей». При этом решающее значение имеет здравый смысл, так как определенные симптомы могут непосредственно указать на проблемную область. Струя масла, вытекающая из-под уплотнения гидроцилиндра, указывает, где находится проблемная область.

Источник фото: exkavator.ru Одна и та же неисправность может привести к неполадке как в машине, так и в гидросистеме

Однако некоторые симптомы являются не столь очевидными. Если в каком-либо узле имеет место утечка потока при переходе от высокого давления к низкому, то в нем происходит локальное выделение тепла, что не всегда удается сразу же обнаружить.

С чего бы вы ни начинали поиск, на определенные вопросы необходимо получить ответ до того, как начнете действовать. Если имеется сообщение о какой-либо проблеме, то необходимо собрать как можно больше фактической информации. Возможно, эта проблема уже имела место и зафиксирована в эксплуатационных документах. В этом случае можно сэкономить много времени. Следует проверить, не проводились ли в системе незадолго до возникновения неисправности какие-либо работы по техническому обслуживанию или настройке. Следует определить точную природу неисправности: возникла она внезапно или развивалась постепенно, в течение продолжительного времени, на работу каких частей машины она влияет.

Источник фото: exkavator.ru Если в каком-либо узле имеет место утечка потока, то в нем происходит локальное выделение тепла

Как определить простейшие неисправности гидросистемы?

Определить неисправности можно двумя способами:

  • с помощью органов чувств;
  • с помощью приборов и инструментов.

Простейшие неисправности гидравлической системы можно определить с помощью органов чувств — увидев, ощутив, услышав, — причем очень быстро. На практике многие проблемы решаются именно таким способом, без применения каких-либо инструментов.

Если с помощью органов чувств не удалось выявить неисправность, то необходимо использовать приборы: манометры, расходомеры и т.п.

Как подойти к поиску более сложных неисправностей гидросистемы?

Перед тем как начинать поиск неисправностей, нужно четко знать, какие параметры гидравлической системы необходимо измерить, чтобы получить информацию о месте нахождения неисправности, и с помощью каких специальных инструментов, приборов и оборудования это сделать.

Измеряемые параметры

Для нормального функционирования машины на ее рабочий орган должна быть передана определенная сила (крутящий момент) с определенной скоростью и в определенном направлении. Соответствие этих параметров заданным и должен обеспечить гидропривод, преобразующий гидравлическую энергию потока жидкости в механическую энергию выходного звена. Правильная работа рабочего органа зависит от параметров потока — расхода, давления и направления.

Следовательно, для проверки работы гидравлической системы необходимо проверить один или несколько из этих параметров. Для принятия решения о том, какие параметры надо проверить, необходимо получить полную информацию о неисправности.

Часто сообщение о неисправности в машине состоит из довольно неточной информации, например: «недостаточная мощность». Мощность зависит как от усилия на выходном звене, так и от его скорости, т.е. от двух параметров. В этом случае для принятия решения о том, какой параметр нужно проверить, следует задать более целенаправленные вопросы: привод работает слишком медленно или он не развивает требуемого усилия или крутящего момента?

Источник фото: exkavator.ru Часто сообщение о неисправности в машине состоит из довольно неточной информации

После определения сути неисправности (недостаточная скорость или сила, неправильное направление движения рабочего органа) можно определить, отклонение какого параметра потока (расхода, давления, направления) от требуемого значения привело к этой неисправности.

Хотя процедура поиска неисправности основана на контроле расхода, давления и направления потока, имеются и другие параметры системы, которые можно измерить как с целью локализации неисправного узла, так и для определения причин его неисправности:

  • давление на входе в насос (вакуумметрическое) — для выяснения неисправностей во всасывающих линиях;
  • температура — обычно более высокая температура одного из узлов системы (по сравнению с температурой остальных) является верным признаком того, что имеет место утечка;
  • шум — при систематических и рутинных проверках шум является хорошим индикатором состояния насоса;
  • уровень загрязнения — при неоднократном появлении отказов гидросистемы следует проверить загрязненность рабочей жидкости для определения причин неисправности.

Источник фото: exkavator.ru В гидравлической системе давление обычно измеряется манометром или вакуумметром

Специальные приборы, инструменты и оборудование для диагностики гидросистемы

В гидравлической системе давление обычно измеряется манометром или вакуумметром, а расход — расходомером. Кроме этого, для специалиста по диагностике могут быть полезны и другие приборы и инструменты:

  • преобразователь давления и самописец — если точность измерения давления должна быть выше точности, которую обеспечивает манометр, а также если необходимо измерить давление при переходном процессе или при действии реактивных возмущений со стороны внешней нагрузки (преобразователь давления выдает переменное напряжение, зависящее от приложенного давления);
  • градуированный сосуд и секундомер — при измерении очень малых расходов, например утечек, с их помощью можно получить большую точность, чем при измерении расходомером;
  • температурный датчик или термометр — для измерения температуры в гидравлическом баке можно установить температурный датчик (часто его совмещают с индикатором уровня рабочей жидкости), причем рекомендуется пользоваться датчиком, выдающим сигнал тревоги, как только температура рабочей жидкости становится слишком низкой или слишком высокой;
  • термопара — для измерения локальной температуры в системе;
  • измеритель шума — повышенный шум также является явным признаком неисправности системы, в особенности для насоса. При помощи измерителя шума всегда можно сравнить уровень шума «подозреваемого» насоса с уровнем шума нового насоса;
  • счетчик частиц — позволяет с высокой степенью достоверности определить уровень загрязненности рабочей жидкости.
Читать еще:  Запись фонокардиограммы проводится

Диагностика гидросистемы при функциональной неполадке в экскаваторе

Шаг 1. Неправильная работа привода может иметь следующие причины:

  • скорость исполнительного механизма не соответствует заданной;
  • подача рабочей жидкости исполнительного механизма не соответствует заданной;
  • отсутствие движения исполнительного механизма;
  • движение в неправильном направлении или неконтролируемое движение исполнительного механизма;
  • неправильная последовательность включения исполнительных механизмов;
  • «ползучий» режим, очень медленная работа исполнительного механизма.

Шаг 2. По гидравлической схеме определяют марку каждого компонента системы и его функцию

Шаг 3. Составляют списки узлов, которые возможно, являются причиной нарушения функционирования машины. Например, недостаточная скорость исполнительного механизма привода может быть следствием недостаточного расхода жидкости, поступающей в гидроцилиндр, или ее давления. Следовательно, надо составить список всех узлов, которые влияют на эти параметры.

Шаг 4. На основании определенного опыта диагностирования определяют приоритетный порядок проверки узлов.

Шаг 5. Каждый узел, содержащийся в списке, подвергают предварительной проверке в соответствии с очередностью. Проверка проводится по таким параметрам, как правильная установка, настройка, восприятие сигнала и т.д., с целью выявления ненормальных признаков (как, например, повышенные температура, шум, вибрация и т.п.)

Шаг 6. Если в результате предварительной проверки узел, имеющий неисправность, не найден, то проводят более интенсивную проверку каждого узла с применением дополнительных инструментов, без снятия узла с машины.

Шаг 7. Проверка с использованием дополнительных приборов должна помочь найти неисправный узел, после чего можно решить, следует его ремонтировать или заменить.

Шаг 8. Перед повторным запуском машины необходимо проанализировать причины и последствия неисправности. Если неполадка вызвана загрязнением или повышением температуры гидравлической жидкости, то она может повториться. Соответственно, надо провести дальнейшие мероприятия по устранению неисправности. Если сломался насос, то его обломки могли попасть в систему. До подключения нового насоса гидроситему следует тщательно промыть.

*Подумайте над тем, что могло привести к повреждению, а также о дальнейших последствиях этого повреждения.

Средства измерения давления в гидравлических системах.

В процессе эксплуатации гидроприводов применяют средства измерения, имеющие нормированные метрологические свойства и предназначенные для нахождения значений физических величин, характеризующих работу этих гидроприводов.

Применяемые средства измерения характеризуются ценой деления, абсолютной погрешностью и классом точности.

Цена деления шкалы — разность значений величин, соответствующих двум соседним отметкам шкалы прибора.

Абсолютная погрешность — разность между показанием прибора и истинным значением измеряемой величины.

Класс точности — обобщенная характеристика средств измерения, определяемая отношением максимально допустимой погрешности ? к конечному значению n шкалы прибора, выраженным в процентах, т.е.

При эксплуатации и испытаниях гидроприводов и отдельных гидроагрегатов измеряют давление, расход и температуру рабочей жидкости, скорость движения, усилия, крутящие моменты, развиваемые на выходных звеньях гидродвигателей.

Измерение давления. Для измерения избыточного давления применяют манометры. Манометры по своему назначению подразделяются на приборы общего назначения (типа М, МТ, ОБМ) и образцовые (типа МО). Рабочие манометры и общего назначения имеют класс точности 1; 1,5; 2,5 и 4. Образцовые манометры имеют более высокие класс точности (0,15; 0,25; 0,4), их применяют для поверки манометров общего назначения и в испытательных стендах.

По принципу действия манометры подразделяются на жидкостные, грузопоршневые, деформационные и электрические.

Жидкостные манометры применяют для измерений небольших давлений и чаще всего представляют собой стеклянную трубку, присоединенную к резервуару (рис.1).

Грузопоршневые манометры (рис.2), состоящие из цилиндра 1 и поршня 2, преобразуют давление рабочей жидкости в усилие, развиваемое поршнем.

Деформационные манометры получили в гидроприводе наибольшее распространение. Принцип их работы основан на зависимости деформации чувствительного элемента (мембраны, трубчатой пружины, сильфона) от измеряемого давления.

Рис.3. Деформационные манометры:
а — мембранный; б — мембранный с двойной мембраной;
в — с консольной балкой; г — сильфонный;
1 — мембрана; 2, 4 — активный и компенсирующий тензорезистор; 3 — консольная балочка

В мембранный манометрах давление со стороны рабочей жидкости передается на мембрану (рис.3, а, б, в). На мембране установлены тензорезисторы, которые изгибаясь вместе с мембраной изменяют свое электрическое сопротивление. Изменение сопротивления регистрируется электрическими приборами и преобразуется в показания значения соответствующего давления.

В сильфонных манометрах (рис.3, г) давление рабочей жидкости приводит к растяжению гофрированной упругой трубки пропорционально давлению.

Мембранный и сильфонные манометры предназначены для измерения небольших давлений.

Пружинный манометр (рис.3) имеет пружину в виде изогнутой латунной трубки (трубка Бурдона) 1 эллиптического поперечного сечения. Верхний конец трубки запаян, а нижний припаян к штуцеру 2, через который манометр присоединяется в гидросистему. При заполнении трубки рабочей средой под давлением она стремится выпрямиться. Через рычажный механизм 3, усиливающий деформацию трубки, перемещение ее свободного конца передается на стрелку 4, расположенную по центру шкалы прибора. Пружинные манометры просты по конструкции, ими можно измерять давление в широком диапазоне.

Рис.3. Деформационные манометры:
а — мембранный; б — мембранный с двойной мембраной;
в — с консольной балкой; г — сильфонный;
1 — мембрана; 2, 4 — активный и компенсирующий тензорезистор; 3 — консольная балочка

Шкала всех манометров градуируется в паскалях или мегапаскалях. На старых образцах давление указывается в кгс/см2. На шкале наносится заводское обозначение; класс точности; номер ГОСТ; год выпуска; номер манометра и название рабочей среды (жидкость, пар, газ), в которой измеряется давление.

Электрические манометры применяют для непрерывного измерения мгновенного значения давления в комплекте с осциллографами. Чувствительным элементом этих приборов может служить трубка Бурдона (рис.4, а) или тонкостенный полый стакан (рис.4, б) с наклеенными на их стенки тензодатчиками.

Читать еще:  К какому врачу идти если поднялось давление

Датчики с манганиновой проволокой (рис.4, в), электрическое сопротивление которой меняется при объемном сжатии, применяются для замера давления.

Для замера пульсаций давления применяют пьезоэлектрические датчики (рис.4, г), регистрирующие только динамическую составляющую давления.

Рис.4. Электрические манометры:
а — с трубкой Бурдона; б — тонкостенный цилиндрический датчик с
наклеенными тензодатчиками; в — с манганиновой проволокой;
г — пьезоэлектрический; 1 — трубка Бурдона; 2 — тензодатчики;
3 — тонкостенный стакан; 4 — манганиновый датчик; 5 — узкая щель;
6 — корпус; 7 — заливка эпоксидной смолой;
8 — пьезоэлектрический датчик; 9 — перегородка

Измерение расхода. Для определения подачи рабочей жидкости используют расходомеры. По принципу действия различают расходомеры: счетчиковые, струйные, электромагнитные, ультразвуковые, тахометрические, а также основанные на перепаде давления и др.

Рис.5. Схемы расходомеров:
а — струйный; б — ультразвуковой; в — турбинный; г — тепловой;
1 — мембрана; 2 — неподвижный электрод; 3 — трубопровод;
4 — направляющая; 5 — корпус; 6 — подшипник; 7 — турбина; 8 — успокоитель;
9 — преобразователь сигнала; 10 — излучатель сигнала;
11 — дополнительный излучатель; 12 — приемник;
13 — дополнительный приемник; 14 — пластина;
15 — термопара; 16 — теплоизоляция; 17 — нагреватель

В струйных расходомерах (рис.5, а) на пути рабочей жидкости в трубопроводе 3 располагается некоторое препятствие типа плоской мембраны 1, отклонение которой является функцией скорости струи, а регистрирующий ток — функцией взаимного положения мембраны 3 и неподвижного электрода 2.

Тахометрические турбинные расходомеры (рис.5, в) работают с малогабаритными электронными преобразователями. В таком расходомере поток рабочей жидкости приводит во вращение турбину, каждый проход лопасти которой наводит импульс ЭДС в обмотке индукционного преобразователя. Скорость потока определяется через частоту электрических импульсов на выходе преобразователя путем как непосредственного измерения, так и выводом на цифровые приборы или преобразованием в аналоговый сигнал. Такими расходомерами можно измерять расходы до 360 л/мин.

Ультразвуковые расходомеры (рис.5, б) работают на основе ультразвуковых колебаний. Благодаря эффекту Доплера частота и фаза ультразвукового сигнала, проходящего от излучателя 11 к приемнику 13, будет изменяться в функции скорости протекания рабочей жидкости. Введение дополнительной пары излучатель 10 — приемник 12 обеспечивает компенсацию температурной нестабильности.

Тепловой неконтактный расходомер применяется для определения подачи насосом рабочей жидкости без разборки гидросистемы (рис.5, г). Он имеет стабилизированный источник питания (СИП), датчик и измерительный прибор (ИП). СИП обеспечивает питание нагревателя и ИП, включающий в себя дифференциальную термопару, позволяет определить скорость потока рабочей жидкости по разности температур входящего потока рабочей жидкости и нагревателя.

Измерение температуры. Температуру рабочей жидкости в гидроприводах измеряют термометрами, которые по принципу действия делятся на термометры расширения, сопротивления и теплоэлектрические. При диагностировании гидроприводов наибольшее распространение получили термометры расширения, имеющие границы измерений от -60 до +250 С.

Измерение крутящего момента на валах гидромашин определяют балансирными динамометрами или торсионометрами, первые из которых получили наибольшее распространение. Балансирные динамометры бывают электрические, тормозные, гидравлические и механические.

Гидравлические датчики

Гидравлические датчики производства Hydac — это современные и эффективные решения в области контроля состояния рабочих жидкостей.

Наша компания предлагает широкий спектр преобразователей, датчиков и реле для обеспечения контроля давления и температуры, расхода и уровня, чистоты и наличия воды в масле.

Технология измерений HYDAC отводит главное место пределам и запасам в машинах и системах, тем самым гарантируя их работу и сохранение характеристик. Измерительная техника и техника автоматического регулирования находит применение везде, где используются жидкие и газообразные среды: мобильное и промышленное применение в воздухе, в воде и на земле, например, электрогидравлическая система стабилизации в легковых автомобилях.

Фирма HYDAC уже более 50 лет развивает и производит компоненты и системы для специальных приложений в области гидравлики и пневматики, и последние 35 лет — управляющую и регулирующую электронику, такую как датчики для измерения давления, различные реле давления, датчики температуры, датчики расхода и уровня жидкости, датчики направления движения, а также датчики загрязнения и состояния гидравлических жидкостей.

Многолетний опыт позволяет нам эффективно взаимодействовать со всеми подразделениями нашей компании. Отделы развития, отделы сертификации по ISO/TS 16949, самые современные испытательные стенды и лаборатории, собственное производство, внедряющее новейшие технологии и гарантирующее качество, соответствующее самым мировым стандартам — все это позволяет нам эффективно производить высококачественное гидравлическое оборудование

Гидравлические датчики

Гидравлические датчики производства Hydac — это современные и эффективные решения в области контроля состояния рабочих жидкостей.

Наша компания предлагает широкий спектр преобразователей, датчиков и реле для обеспечения контроля давления и температуры, расхода и уровня, чистоты и наличия воды в масле.

Технология измерений HYDAC отводит главное место пределам и запасам в машинах и системах, тем самым гарантируя их работу и сохранение характеристик. Измерительная техника и техника автоматического регулирования находит применение везде, где используются жидкие и газообразные среды: мобильное и промышленное применение в воздухе, в воде и на земле, например, электрогидравлическая система стабилизации в легковых автомобилях.

Фирма HYDAC уже более 50 лет развивает и производит компоненты и системы для специальных приложений в области гидравлики и пневматики, и последние 35 лет — управляющую и регулирующую электронику, такую как датчики для измерения давления, различные реле давления, датчики температуры, датчики расхода и уровня жидкости, датчики направления движения, а также датчики загрязнения и состояния гидравлических жидкостей.

Многолетний опыт позволяет нам эффективно взаимодействовать со всеми подразделениями нашей компании. Отделы развития, отделы сертификации по ISO/TS 16949, самые современные испытательные стенды и лаборатории, собственное производство, внедряющее новейшие технологии и гарантирующее качество, соответствующее самым мировым стандартам — все это позволяет нам эффективно производить высококачественное гидравлическое оборудование

Датчики измерения давления в гидроцилиндре

В сотрудничестве с нашими консультантами разработан и производится датчик давления. Корпус датчика и предлагаемые в комплекте переходники, изготовлены из алюминиевого сплава и имеют «накатку» для исключения скольжения пальцев. Измерительный элемент производства фирмы Моторола, отличающейся высоким качеством выпускаемых измерительных элементов, помещен внизу корпуса датчика, что позволяет максимально точно отслеживать давление и разрежение в цилиндре двигателя непосредственно при его работе. Питание на датчик берется от 12 вольт бортовой сети автомобиля, датчик универсален т.е. его можно использовать с любым специализированным осциллографом.

Тестирование датчика показало его хорошую чувствительность и качество сигнала. В виде примера приводятся фотографии и скриншоты тестирования на автомобиле ВАЗ-21124. Датчик соединен с длинным переходником и установлен на место свечи первого цилиндра.

Читать еще:  Давление каким знаком обозначается

Каждый цифровой датчик имеет свой «ноль» это некоторое напряжение, имеющееся на выходе в состоянии покоя. В данном случае напряжение покоя составляет 0,85 вольта, его принимаем за «ноль» и учитываем в расчетах. Далее проводим тест на наличие расхождения по времени сигналов ДПКВ и датчика давления.

В диагностической практике вполне достаточно совпадения ВМТ по этим двум датчикам.

Как видим, расхождений практически нет. Следующий тест на чувствительность – куском ветоши прикрываем выходную трубку глушителя и видим как осциллограмма поползла вверх. В реальных условиях, при спекшемся или рассыпавшемся катализаторе расхождения будут еще более заметны.

Естественно, каждый датчик имеет диапазон допустимых нагрузок и температур, которые необходимо соблюдать при эксплуатации. А также ограниченный срок службы, который уменьшается при несоблюдении условий эксплуатации. Датчик тестировался со значительными нагрузками по давлению, температуре и нахождению в агрессивной среде. Практические результаты этих испытаний, позволяют сделать вывод о хорошей надежности изделия при соблюдении следующих условий: 1. Время работы двигателя на холостом ходу, с установленным датчиком давления не должно превышать 3-х минут. 2. Температура нагрева датчика не должна превышать 80 гр.

Для получения осциллограммы можно воспользоваться режимами осциллограф или самописец. Стоит обратить внимание, что USB осциллограф в низковольтовом диапазоне может выдавать зашумлённый сигнал, поэтому для получения качественных изображений можно применить кнопки математического сглаживания сигналов (см. ниже на скриншотах).






При запуске приложения в режиме Мотор-Мастер на панели инструментов появляется панель диагностики по датчику давления.
Кнопка Рамка ДД открывает рамку датчика давления. Эта рамка служит для преобразования значений напряжения на осциллограмме в значения давления (в барах).
Рамка может перемещаться и изменять свои размеры с помощью мыши.
Перемещая указатель мыши внутри рамки можно наблюдать значение параметров в данной точке.
Диапазон горизонтальной оси жестко зафиксирован от 0 до 720 градусов.
Диапазон вертикальной оси может изменять свои значения, для этого необходимо щелкнуть мышью по максимальному или минимальному значению вертикальной шкалы.
Двойной щелчок мыши внутри области рамки позволяет отметить на диаграмме точку с отображением параметров сигнала в данной точке. Двойной щелчок мыши по имеющейся точке удалит ее.

Кнопка Параметры ДД открывает панель параметров датчика давления.
Параметр Umax определяется как значение максимального напряжения на датчике давления за вычетом напряжения смещения U0, которое можно задавать вручную.
Параметр R отображает обороты двигателя (для 4х цилиндровых двигателей) и определяется по принципу “один импульс на два оборота”, то есть с использованием формулы R = 120/T, где T — разница между импульсами на датчике давления (в секундах).

В этом случае выявлен разрушенный катализатор, забивший своими остатками выхлопную трубу. Если в фазе выпуска наблюдается рост среднего давления в выпускном коллекторе выше 0.86 атм, то это означает забитый глушитель. Например, разрушенный катализатор. При этом возможно смещение всего графика давления вверх. Обычно, при не забитом глушителе, давление в выпускном коллекторе около 0,2 атм.
При забитой выхлопной системе противодавление выпуску будет повышаться от такта к такту, этим и можно отличить данную неисправность от подсоса воздуха на впуске, там график давления стабилен.

Назначение.

Датчик давления предназначен для получения осциллограммы, отражающей изменение давления в цилиндре бензинового двигателя, по характерным точкам и участкам которой определяется ряд параметров:
— взаимное положение коленчатого и распределительных валов,
— состояние уплотнений цилиндро-поршневой группы,
— по градусной шкале определяются некоторые фазы работы ГРМ,
— пропускная способность выхлопной системы,
— соответствие взаимного положения задающего диска и датчика положения коленчатого вала.

Диапазон измеряемого абсолютного давления датчиком, позволяет измерять разрежение
до 0,85 Bar и давление до 7 Bar относительно нулевого значения атмосферного давления. Такой диапазон позволяет получить достоверный график давления в цилиндре бензинового двигателя, прогретого до рабочей температуры и работающего на оборотах холостого хода с отключенной системой зажигания в диагностируемом цилиндре.
Комплекс технических характеристик и особенности конструкции датчика обеспечивают стабильность диапазона измеряемого датчиком абсолютного давления и высокую точность измерений даже под воздействием разогретых до высокой температуры вследствие быстрого сжатия газов.

Характеристики.

Максимальное рабочее давление кПа: 700
Максимальное допустимое давление кПа: 2800
Диапазон выходного напряжения мВ: 4500
Температурная компенсация: есть

Порядок работы.

Для проведения диагностики состояния механики двигателя по графику давления в цилиндре, необходимо:
— установить датчик давления, вкрутив его в свечное отверстие диагностируемого цилиндра
(при необходимости использовать удлинитель),
— высоковольтный провод диагностируемого цилиндра нагрузить искровым разрядником для исключения выхода из строя элементов системы зажигания,
— подать питание на датчик, подключив кабель питания к соответствующим клеммам АКБ автомобиля,
— подключить сигнальный кабель к входу осциллографа,
— двигатель должен быть предварительно прогрет до рабочей температуры и работать на оборотах холостого хода без нагрузки.
В таком режиме работы двигателя, на такте впуска топливовоздушной смеси, значение разрежения в цилиндре достигает 0,65…0,75 Bar и превышает среднее значение разрежения во впускном коллекторе.

На акте выпуска топливовоздушной смеси, значение давления в цилиндре практически не превышает атмосферного. Повышение давления в цилиндре на такте выпуска может быть вызвано малым проходным сечением выпускных каналов отработавших газов, причиной чего может быть малый ход открытия выпускного клапана, «забит» катализатор, глушитель или выхлопная труба.

Диапазон давлений датчика составляет -0,85…+7 Bar, что перекрывает диапазон давлений в диагностируемом цилиндре бензинового двигателя, прогретого до рабочей температуры и работающего на оборотах холостого хода без нагрузки. Комплекс технических характеристик и особенности конструкции датчика обеспечивают стабильность диапазона измеряемого датчиком абсолютного давления и высокую точность измерений даже под воздействием разогретых до высокой температуры вследствие быстрого сжатия газов.

1. Установка датчика, на прогретый до рабочей температуры двигатель, производится не менее чем через 10 минут после его остановки, для исключения взрыва топливной смеси в цилиндре от раскаленных частей камеры сгорания или свечи зажигания (калильное зажигание), что неизбежно приведет к повреждению датчика.
2. Время работы двигателя на холостом ходу, с установленным датчиком давления не должно превышать 3-х минут.
3. Температура нагрева корпуса датчика не должна превышать 80 гр.

В полный комплект поставки датчика давления входят:

1. Датчик давления
2. Удлинитель датчика
3. Шнур питания от АКБ и соединения с осциллографом

Ссылка на основную публикацию
Adblock
detector