Белок плазмы крови называется

Белки плазмы крови

Из 9–10% сухого остатка плазмы крови на долю белков приходится 6,5–8,5%. Используя метод высаливания нейтральными солями, белки плазмы крови можно разделить на три группы: альбумины, глобулины и фибриноген. Нормальное содержание альбуминов в плазме крови составляет 40–50 г/л, глобулинов – 20–30 г/л, фибриногена – 2,4 г/л. Плазма крови, лишенная фибриногена, называется сывороткой.

Синтез белков плазмы крови осуществляется преимущественно в клетках печени и ретикулоэндотелиальной системы. Физиологическая роль белков плазмы крови многогранна.

1. Белки поддерживают коллоидно-осмотическое (онкотическое) давление и тем самым постоянный объем крови. Содержание белков в плазме значительно выше, чем в тканевой жидкости. Белки, являясь коллоидами, связывают воду и задерживают ее, не позволяя выходить из кровяного русла. Несмотря на то что онкотическое давление составляет лишь небольшую часть (около 0,5%) от общего осмотического давления, именно оно обусловливает преобладание осмотического давления крови над осмотическим давлением тканевой жидкости. Известно, что в артериальной части капилляров в результате гидростатического давления безбелковая жидкость крови проникает в тканевое пространство. Это происходит до определенного момента – «поворотного», когда падающее гидростатическое давление становится равным коллоидно-осмотическому. После «поворотного» момента в венозной части капилляров происходит обратный ток жидкости из ткани, так как гидростатическое давление стало меньше, чем коллоидно-осмотическое. При иных условиях в результате гидростатического давления в кровеносной системе вода просачивалась бы в ткани, что вызвало бы отек различных органов и подкожной клетчатки.

2. Белки плазмы принимают активное участие в свертывании крови. Ряд белков, в том числе фибриноген, являются основными компонентами системы свертывания крови.

3. Белки плазмы в известной мере определяют вязкость крови, которая, как отмечалось, в 4–5 раз выше вязкости воды и играет важную роль в поддержании гемодинамических отношений в кровеносной системе.

4. Белки плазмы принимают участие в поддержании постоянного рН крови, так как составляют одну из важнейших буферных систем крови.

5. Важна также транспортная функция белков плазмы крови: соединяясь с рядом веществ (холестерин, билирубин и др.), а также с лекарственными средствами (пенициллин, салицилаты и др.), они переносят их к тканям.

6. Белки плазмы играют важную роль в процессах иммунитета (особенно это касается иммуноглобулинов).

7. В результате образования с белками плазмы недиализируемых комплексов поддерживается уровень катионов в крови. Например, 40–50% кальция сыворотки связано с белками, значительная часть железа, магния, меди и других элементов также связана с белками сыворотки.

8. Наконец, белки плазмы крови могут служить резервом аминокислот. Современные физико-химические методы позволили открыть и описать около 100 различных белковых компонентов плазмы крови. Особое значение приобрело электрофоретическое разделение белков плазмы (сыворотки) крови.

В сыворотке крови здорового человека при электрофорезе на бумаге можно обнаружить 5 фракций: альбумины, α1-, α2-, β-, γ-глобулины. Методом электрофореза в агаровом геле в сыворотке крови выделяют 7– 8 фракций, а при электрофорезе в крахмальном или полиакриламидном геле – до 16–17 фракций. Следует помнить, что терминология белковых фракций, получаемых при различных видах электрофореза, еще окончательно не установилась. При изменении условий электрофореза, а также при электрофорезе в различных средах (например, в крахмальном или полиак-риламидном геле) скорость миграции и, следовательно, порядок белковых зон могут меняться.

Еще большее число белковых фракций (свыше 30) можно получить методом иммуноэлектрофореза (рис. 17.1). Этот метод представляет собой своеобразную комбинацию электрофоретического и иммунологического методов анализа белков. Иными словами, термин «иммуноэлектрофорез» подразумевает проведение электрофореза и реакции преципитации в одной среде, т.е. непосредственно на гелевом блоке. При данном методе с помощью серологической реакции преципитации достигается значительное повышение аналитической чувстительности электрофоретического метода.

БЕЛКИ ПЛАЗМЫ КРОВИ

БИОХИМИЯ КРОВИ

ВОПРОС 61

В плазме крови содержится 7% всех белков организма при концентрации 60 — 80 г/л. Белки плазмы крови выполняют множество функций. Одна из них заключается в поддержании осмотического давления, так как белки связывают воду и удерживают её в кровеносном русле.

  • Белки плазмы образуют важнейшую буферную систему крови и поддерживают рН крови в пределах 7,37 — 7,43.
  • Альбумин, транстиретин, транскортин, трансферрин и некоторые другие белки (табл. 14-2) вьшолняют транспортную функцию.
  • Белки плазмы определяют вязкость крови и, следовательно, играют важную роль в гемодинамике кровеносной системы.
  • Белки плазмы крови являются резервом аминокислот для организма.
  • Иммуноглобулины, белки свёртывающей системы крови, α1-антитрипсин и белки системы комплемента осуществляют защитную функцию.

Методом электрофореза на ацетилцеллюлозе или геле агарозы белки плазмы крови можно разделить на альбумины (55-65%), α1-глобулины (2- 4%), α2 -глобулины (6-12%), β-глобулины (8-12%) и γ-глобулины (12-22%) (рис. 14-19).

Применение других сред для электрофоретического разделения белков позволяет обнаружить большее количество фракций. Например, при электрофорезе в полиакриламидном или крахмальном гелях в плазме крови выделяют 16-17 белковых фракций. Метод иммуноэлектрофореза, сочетающий электрофоретический и иммунологический способы анализа, позволяет разделить белки плазмы крови более чем на 30 фракций. Большинство сывороточных белков синтезируется в печени, однако некоторые образуются и в других тканях. Например, γ-глобулины синтезируются В-лимфоцитами (см. раздел 4), пептидные гормоны в основном секретируют клетки эндокринных желёз, а пептидный гормон эритропоэтин — клетки почки. Для многих белков плазмы, например альбумина, α1-антитрипсина, гаптоглобина, транс-феррина, церулоплазмина, α2-макроглобулина и иммуноглобулинов, характерен полиморфизм (см. раздел 4). Почти все белки плазмы, за исключением альбумина, являются гликопротеинами. Олигосахариды присоединяются к белкам, образуя гликозидные связи с гидроксильной группой серина или треонина, или взаимодействуя с карбоксильной группой аспарагина. Концевой остаток олигосахаридов в большинстве случаев представляет собой N-ацетилнейраминовую кислоту, соединённую с галактозой. Фермент эндотелия сосудов нейраминидаза гидролизует связь между ними, и галактоза становится доступной для специфических рецепторов гепатоцитов. Путём эвддцитоза «состарившиеся» белки поступают в клетки печени, где разрушаются. Т1/2 белков плазмы крови составляет от нескольких часов до нескольких недель. При ряде заболеваний происходит изменение соотношения распределения белковых фракций при электрофорезе по сравнению с нормой (рис. 14-20). Такие изменения называют диспротеинемиями, однако их интерпретация часто имеет относительную диагностическую ценность. Например, характерное для нефротического синдрома снижение альбуминов, α1— и γ-глобулинов и увеличение α2— и β-глобулинов отмечают и при некоторых других заболеваниях, сопровождающихся потерей белков. При снижении гуморального иммунитета уменьшение фракции γ-глобулинов свидетельствует об уменьшении содержания основного компонента иммуноглобулинов — IgG, но не отражает динамику изменений IgA и IgM. Содержание некоторых белков в плазме крови может резко увеличиваться при острых воспалительных процессах и некоторых других патологических состояниях (травмы, ожоги, инфаркт миокарда). Такие белки называют белками острой фазы, так как они принимают участие в развитии воспалительной реакции организма. Основной индуктор синтеза большинства белков острой фазы в гепатоцитах — полипептид интерлейкин-1, освобождающийся из мононуклеарных фагоцитов. К белкам острой фазы относят С-реактивный белок, называемый так, потому что он взаимодействует с С-полисахари-дом пневмококков, α1-антитрипсин, гаптоглобин, кислый гликопротеин, фибриноген. Известно, что С-реактивный белок может стимулировать

Рис. 14-19. Электрофореграмма (А) и денситограмма (Б) белков сыворотки крови.

Рис. 14-20. Протеинограммы белков сыворотки крови. а — в норме; б — при нефротическом синдроме; в — при гипогаммаглобулинемии; г — при циррозе печени; д — при недостатке α1-антитрипсина; е — при диффузной гипергаммаглобулинемии.

систему комплемента, и его концентрация в крови, например, при обострении ревматоидного артрита может возрастать в 30 раз по сравнению с нормой. Белок плазмы крови а,-антитрипсин может инактивировать некоторые протеазы, освобождающиеся в острой фазе воспаления.

Содержание некоторых белков в плазме крови и их функции представлены в таблице 14-2.

Альбумин.Концентрация альбумина в крови составляет 40-50 г/л. В сутки в печени синтезируется около 12 г альбумина, Т1/2 этого белка — примерно 20 дней. Альбумин состоит из 585 аминокислотных остатков, имеет 17 дисульфидных связей и обладает молекулярной массой 69 кД. Молекула альбумина содержит много дикарбоновых аминокислот, поэтому может удерживать в крови катионы Са 2+ , Cu 2+ , Zn 2+ . Около 40% альбумина содержится в крови и остальные 60% в межклеточной жидкости, однако его концентрация в плазме выше, чем в межклеточной жидкости, поскольку объём последней превышает объём плазмы в 4 раза.

Читать еще:  Давление 140 на 80 как снизить в домашних условиях

Благодаря относительно небольшой молекулярной массе и высокой концентрации альбумин обеспечивает до 80% осмотического давления плазмы. При гипоальбуминемии осмотическое давление плазмы крови снижается. Это приводит к нарушению равновесия в распределении внеклеточной жидкости между сосудистым руслом и межклеточным пространством. Клинически это проявляется как отёк. Относительное снижение объёма плазмы крови сопровождается снижением почечного кровотока, что вызывает стимуляцию системы ренинангиотензинальдрстерон, обеспечивающей восстановление объёма крови (см. раздел 11). Однако при недостатке альбумина, который должен удерживать Na+, другие катионы и воду, вода уходит в межклеточное пространство, усиливая отёки.

Гипоальбуминемия может наблюдаться и в результате снижения синтеза альбуминов при заболеваниях печени (цирроз), при повышении проницаемости капилляров, при потерях белка из-за обширных ожогов или катаболических состояний (тяжёлый сепсис, злокачественные новообразования), при нефротическом синдроме, сопровождающемся альбуминурией, и голодании. Нарушения кровообращения, характеризующиеся замедлением кровотока, приводят к увеличению поступления альбумина в межклеточное пространство и появлению отёков. Быстрое увеличение проницаемости капилляров сопровождается резким уменьшением объёма крови, что приводит к падению АД и клинически проявляется как шок.

Альбумин — важнейший транспортный белок. Он транспортирует свободные жирные кислоты (см. раздел 8), неконъюгированный билирубин (см. раздел 13), Са 2+ , Сu 2+ , триптофан, тироксин и трийодтиронин (см. раздел 11). Многие лекарства (аспирин, дикумарол, сульфаниламиды) связываются в крови с альбумином. Этот факт необходимо учитывать при лечении заболеваний, сопровождающихся гипоальбуминемией, так как в этих случаях повышается концентрация свободного лекарства в крови. Кроме того, следует помнить, что некоторые лекарства могут конкурировать за центры связывания в молекуле альбумина с билирубином и между собой.

Транстиретин(преальбумин) называют тирок-синсвязывающим преальбумином. Это белок острой фазы. Транстиретин относят к фракции альбуминов, он имеет тетрамерную молекулу. Он способен присоединять в одном центре связывания ретинолсвязывающий белок, а в другом — до двух молекул тироксина и трийодтиронина.

Таблица 14-2. Содержание и функции некоторых белков плазмы крови

Белки плазмы крови

Состав и свойства плазмы крови

Таблица 1. Состав плазмы

Примечание. ЛПОНП — липопротеиды очень низкой плотности; ЛППП — липопротеиды промежуточной плотности; ЛПНП — липопротеиды низкой плотности; ЛПВП — липопротеиды высокой плотности.

плазма в общем составе крови

  • Белки, которые забирают на себя 7 – 8 % от всего объема жидкой части крови (в 1 литре плазмы содержится от 65 до 85 граммов белков, норма общего белка в крови в биохимическом анализе: 65 – 85 г/л). Основными плазменными белками признаны альбумины (до 50% от всех белков или 40 – 50 г/л), глобулины (≈ 2,7%) и фибриноген;
  • Другие вещества белковой природы (компоненты комплемента, липопротеиды, углеводно-белковые комплексы и пр.);
  • Биологически активные вещества (ферменты, гемопоэтические факторы — гемоцитокины, гормоны, витамины);
  • Низкомолекулярные пептиды – цитокины, которые, в принципе, белки, но с низкой молекулярной массой, они продуцируются преимущественно лимфоцитами, хотя другие клетки крови также к этому причастны. Не глядя на свой «малый рост», цитокины наделены важнейшими функциями, они осуществляют взаимодействие системы иммунитета с другими системами при запуске иммунного ответа;
  • Углеводы, липиды, которые участвуют в обменных процессах, постоянно протекающих в живом организме;
  • Продукты, полученные в результате этих обменных процессов, которые впоследствии будут удалены почками (билирубин, мочевина, креатинин, мочевая кислота и др.);
  • В плазме крови собрано подавляющее большинство элементов таблицы Д. И. Менделеева. Правда, одни представители неорганической природы (натрий, хлор, калий, магний, фосфор, йод, кальций, сера и др.) в виде циркулирующих катионов и анионов легко поддаются подсчету, другие (ванадий, кобальт, германий, титан, мышьяк и пр.) – по причине мизерного количества, рассчитываются с трудом. Между тем, на долю всех присутствующих в плазме химических элементов приходится от 0,85 до 0,9%.

Вода – источник Н2О для всех клеток и тканей, присутствуя в плазме в столь значительных количествах, она обеспечивает нормальный уровень артериального давления (АД), поддерживает в более-менее постоянном режиме объем циркулирующей крови (ОЦК).

Различаясь аминокислотными остатками, физико-химическими свойствами и другими характеристиками, белки создают основу организма, обеспечивая ему жизнь. Разделив плазменные белки на фракции, можно узнать содержание отдельных протеинов, в частности, альбуминов и глобулинов, в плазме крови. Так делают с диагностической целью в лабораториях, так делают в промышленных масштабах для получения очень ценных лечебных препаратов.

Среди минеральных соединений наибольшая доля в составе плазмы крови принадлежит натрию и хлору (Na и Cl). Эти два элемента занимают ≈ по 0,3% минерального состава плазмы, то есть, они как бы являются основными, что нередко используется для восполнения объема циркулирующей крови (ОЦК) при кровопотерях.

В подобных случаях готовится и переливается доступное и дешевое лекарственное средство — изотонический раствор хлорида натрия. При этом 0,9% р-р NaCl называют физиологическим, что не совсем верно: физиологический раствор должен, кроме натрия и хлора, содержать и другие макро- и микроэлементы (соответствовать минеральному составу плазмы).

Значение белка

Общий белок – это показатель обменного процесса аминокислот в организме, характеризующий уровень концентрации белковых молекул и фракций в плазме. Значение показателя белкового метаболизма отражает способность организма к восстановлению. В состав плазмы крови входит более 100 видов белков. Синтез в большей степени осуществляется клетками печени (гепатоцитами). Важность белков обусловлена выполнением следующих функций:

  1. обеспечивают онкотическое давление, за счет которого вода удерживается в русле крови.
  2. Принимают участие в свертываемости крови.
  3. Поддерживают кислотно-щелочной баланс крови, так как создают белковый буфер.
  4. Обеспечивают транспортную функцию. Образуют соединение с некоторыми веществами (холестерин, билирубин и другие), составляющими медикаментозных препаратов и доставляют их к органам и тканям.
  5. Выполняют иммунную функцию организма.
  6. Создают резервный запас аминокислот.
  7. Обеспечивают определенную вязкость и текучесть крови.
  8. Принимают участие в реакциях организма на воспалительные процессы.

Уровень белка в крови определяют при биохимическом анализе крови, которое имеет важное диагностическое значение при многих патологических нарушениях. Одного лишь определения уровня белка недостаточно для того, чтобы точно поставить диагноз, поэтому при отклонении содержания от нормы производят биохимический анализ фракций белка и прочие дополнительные обследования. Также немаловажным при диагностике является исследование небелковых компонентов крови.

Функции плазмы крови обеспечивают белки

Белки плазмы крови по своему составу делятся на простые и сложные. К простым относятся альбумины, а к сложным липопротеины, гликопротеины (подавляющее число белков плазмы) и металлопротеины (трансферин, церрулоплазмин). Белки плазмы крови представляют собой комплекс белков различных структур и функций. Выделение фракций из белков осуществляют с применением электрического тока — электрофорезом.

Разделить белки данным способом можно на большое количество фракций, но основными из них являются:

  1. альбумины — основная составляющая белков плазмы, синтезируемый клетками печени. Обновляется альбумин очень стремительно. За одни сутки происходит синтез и распад 10-16 грамм белков данной фракции. Альбумин осуществляет несколько функций для организма. Поддерживает онкотическое давление, создает резервный запас аминокислот, переносит вещества к органам и тканям, в особенности нерастворимые в воде.
  2. а1-глобулины. Фракция включает в себя нерастворимые белки с высокой гидрофильностью и низкой молекулярной массой. При нарушении функционирования почек быстро выводятся из организма вместе с мочой, не оказывая при этом значительного влияния на онкотическое давление. Выполняют транспортировку липидов, активно участвуют в свертываемости крови, угнетают некоторые ферменты, оказывающие негативное воздействие на организм.
  3. а2-глобулины, синтезируемые в печени в объеме 75%, являются высокомолекулярными белками. В состав фракции входят регуляторные белки: а2-макроглобулин — участвует в инфекционных и воспалительных реакциях; гаптоглобин — создает специфическое соединение с гемоглобином, препятствует выведению железа; церулоплазмин — обеспечивает постоянное содержание меди в тканях.
  4. b-глобулины, 50% синтеза осуществляется клетками печени. В фракцию b-глобулинов входят некоторые белки, обеспечивающие свертываемость крови. Большую часть состава фракции занимают: липопротеины низкой плотности; трансферрин — транспортирует железо; составляющие комплемента участвуют в реакции иммунной системы; бета-липопротеиды — переносят холестерин и фосфолипиды.
  5. g-глобулины, синтез осуществляется В-лимфоцитами. В состав фракции входят белки-антитела (иммуноглобулины) и некоторые элементы системы комплемента. Иммуноглобулины выполняют защитную функцию организма от инфицирования и внешних возбудителей.
Читать еще:  Виды экспериментальной гипертонии

Глобулины являются нерастворимыми компонентами плазмы и растворяются в слабоконцентрированных солевых растворах. Нарушение соотношения фракций белков определяется при многих патологических реакциях путем проведения биохимии крови. При анализе показателей в динамике и в совокупности с изменением небелковых соединений можно с высокой точностью определить длительность заболевания и эффективность проводимой терапии.

Функции плазмы крови определяются ее составом, преимущественно, белковым. Более детально этот вопрос будет рассмотрен в разделах ниже, посвященных основным белкам плазмы , однако кратко отметить важнейшие задачи, которые решает этот биологический материал, не помешает. Итак, главные функции плазмы крови:

  1. Транспортная (альбумин, глобулины);
  2. Дезинтоксикационная (альбумин);
  3. Защитная (глобулины — иммуноглобулины);
  4. Коагуляционная (фибриноген, глобулины: альфа-1-глобулин — протромбин);
  5. Регуляторная и координационная (альбумин, глобулины);

Это коротко о функциональном назначении жидкости, которая в составе крови постоянно движется по кровеносным сосудам, обеспечивая нормальную жизнедеятельность организма. Но все же некоторым ее компонентам следовало бы уделить больше внимания, к примеру, что читатель узнал о белках плазмы крови, получив столь мало сведений? А ведь именно они, главным, образом, решают перечисленные задачи (функции плазмы крови).

белки плазмы крови

Безусловно, дать полнейший объем информации, затрагивая все особенности белков, присутствующих в плазме, в небольшой статье, посвященной жидкой части крови, наверное, сделать трудновато. Между тем, вполне возможно познакомить читателя с характеристиками основных протеинов (альбумины, глобулины, фибриноген – их считают главными белками плазмы) и упомянуть о свойствах некоторых других веществ белковой природы. Тем более что (как указывалось выше) они обеспечивают качественное выполнение своих функциональных обязанностей этой ценной жидкостью.

Несколько ниже будут рассмотрены основные белки плазмы, однако вниманию читателя хотелось бы представить таблицу, которая показывает, какими протеинами представлены основные белки крови, а также их главное предназначение.

Белок плазмы крови называется

270-271

Ткани и органы. Кровь

Белки плазмы крови

Основную массу растворимых нелетучих веществ плазмы крови образуют белки. Их концентрация лежит в пределах 60-80 г/л; они составляют примерно 4% всех белков организма.

А. Белки плазмы крови

В плазме крови человека содержится около 100 различных белков. По подвижности при электрофорезе (см. ниже) их можно грубо разделить на пять фракций: альбумин, α1-, α2-, β- и γ-глобулины. Разделение на альбумин и глобулин первоначально основывалось на различии в растворимости: альбумины растворимы в чистой воде, а глобулины — только в присутствии солей.

В количественном отношении среди белков плазмы наиболее представлен альбумин (около 45 г/л), который играет существенную роль в поддержании коллоидно-осмотического давления в крови и служит для организма важным резервом аминокислот. Альбумин обладает способностью связывать липофильные вещества, вследствие чего он может функционировать в качестве белка-переносчика длинноцепочечных жирных кислот, билирубина, лекарственных веществ, некоторых стероидных гормонов и витаминов. Кроме того, альбумин связывает ионы Са 2+ и Mg 2+ .

К альбуминовой фракции принадлежит также транстиретин (преальбумин), который вместе с тироксинсвязывающим глобулином [ТСГл (TBG)] и альбумином транспортирует гормон тироксин и его метаболит иодтиронин.

В таблице приведены другие свойства важных глобулинов плазмы крови. Эти белки участвуют в транспорте липидов (см. рис. 273), гормонов, витаминов и ионов металлов, они образуют важные компоненты системы свертывания крови (см. рис. 283); фракция γ-глобулинов содержит антитела иммунной системы (см. рис. 289).

Образование и разрушение. Большинство белков плазмы синтезируется в клетках печени. Исключение составляют иммуноглобулины, которые продуцируются плазматическими клетками иммунной системы (см. рис. 287), и пептидные гормоны, секретируемые клетками эндокринных желез (см. рис. 371).

Кроме альбумина почти все белки плазмы являются гликопротеинами. Они включают олигосахариды, присоединенные к аминокислотным остаткам N- и О-гликозидными связями (см. с. 50). В качестве концевого остатка углеводной цепи часто выступает N-ацетилнейраминовая кислота (сиаловая кислота, см. с. 44). Если эта группа отщепляется нейраминидазой, ферментом находящимся в стенках кровеносных сосудов, на поверхности белка оказываются концевые остатки галактозы. Остатки галактозы асиалогликопротеинов (т. е. десиалированных белков) узнаются и связываются рецепторами галактозы на гепатоцитах. В печени эти «состарившиеся» белки плазмы удаляются путем эндоцитоза. Таким образом, олигосахариды на поверхности белка определяют время жизни белков плазмы, полупериод выведения (биохимический полупериод) которых составляет от нескольких дней до нескольких недель (см. рис. 179).

В здоровом организме концентрация белков плазмы поддерживается на постоянном уровне. Однако их концентрация изменяется при заболевании органов, участвующих в синтезе и катаболизме этих белков. Повреждение тканей посредством цитокинов (см. рис. 379) увеличивает образование белков острой фазы, к которым принадлежат С-реактивный белок, гаптоглобин, фибриноген, компонент С-З комплемента и некоторые другие.

Белки и другие заряженные макромолекулы можно разделять методами электрофореза (см. с. 84). Среди различных электрофоретических методов наиболее простым является электрофорез на носителе, особенно на ацетилцеллюлозной пленке. При этом сывороточные белки, которые из-за наличия избыточного отрицательного заряда движутся к аноду, разделяются на пять вышеупомянутых фракций. После разделения белки можно окрашивать с помощью красителей и денситометрически оценивать количества белков в полученных окрашенных полосах.

При определенных заболеваниях изменяются концентрации отдельных белков (так называемые диспротеинемии ).

Белки плазмы и их функции

Остановка кровотечения(гемостаз)

4.Поддержания гомеостаза(pH, осмоляльность, температура, целостность сосудистого русла)

5.Регуляторная функция(транспорт гормонов и др. веществ(минералы,витамины), изменяющих деятельность органа)

Состав крови.

Плазма крови– жидкая опалесцирующая жидкость желтоватого цвета, которая состоит на 91-92% из воды. Она содержит в своем составе органические и неорганические вещества.

Органические– белки(7-8% или 60-82 г/л), остаточный азот – в результате белкового обмена(мочевина, мочевая кислота, креатинин, креатин, амиак) – 15-20ммол/л. Этот показатель характеризует работу почек. Рост этого показателя свидетельствует о почечной недостаточности. Глюкоза – 3,33-6,1ммол/л — диагностируется сахарный диабет.

Неорганические– соли(катионы и анионы) – 0,9%

Белки плазмы и их функции.

Альбумины. Их содержится в крови 4,5-6,7%, т.е. 60-65% всех плазменных белков приходится на долю альбуминов. Они выполняют в основном питательно-пластическую функцию. Не менее важна транспортная роль альбуминов, так как они могут связывать и транспортировать не только метаболиты, но лекарства. При большом накоплении жира в крови часть его тоже связывается альбуминами. Поскольку альбуминам принадлежит очень высокая осмотическая активность, на их долю приходится до 80% всего коллоидно-осмотического (онкотического) давления крови. Поэтому уменьшение количества альбуминов ведет к нарушению водного обмена между тканями и кровью и появлению отеков. Синтез альбуминов происходит в печени.

Глобулиныобычно всюду сопутствуют альбуминам и являются наиболее распространенными из всех известных белков. Общее количество глобулинов в плазме составляет 2,0-3,5%, т.е. 35-40% от всех белков плазмы. По фракциям их содержание следующее:

альфа1-глобулины— 0,22-0,55 г% (4-5%)

альфа2-глобулины- 0,41-0,71г% (7-8%)

бета-глобулины — 0,51-0,90 г% (9-10%)

гамма-глобулины— 0,81-1,75 г% (14-15%)

Молекулярный вес глобулинов 150-190 тыс. Место образования может быть различным. Большая часть синтезируется в лимфоидных и плазматических клетках ретикулоэндотелиальной системы. Часть — в печени. Физиологическая роль глобулинов многообразна. Так, гамма-глобулины являются носителями иммунных тел. Альфа- и бета- глобулины тоже имеют антигенные свойства, но специфической их функцией является участие в процессах свертывания (это плазменные факторы свертывания крови). Сюда же относятся большая часть ферментов крови, а так же трансферин, церуллоплазмин, гаптоглобины и др. белки.

Фибриноген. Этот белок составляет 0,2-0,4 г%, около 4% от всех белков плазмы крови. Имеет непосредственное отношение к свертыванию, во время которого выпадает в осадок после полимеризации.

Протромбин-белок плазмы крови человека и животных, важнейший компонент системы свёртывания крови.

Другие вещества:

Липиды (жиры) – нерастворимы в воде, и поэтому они не могут транспортироваться кровью в чистом виде. Однако в крови липиды находятся в связанном с транспортными белками состоянии и приобретают растворимость. Образовавшееся химическое соединение носит название липопротеид или липопротеин. Выделяют несколько классов данных соединений:

·липопротеины очень низкой плотности (ЛПОНП) – образуются в печени, содержат липиды (холестерин и триглицериды) которые переносят с кровью к тканям;

·липопротеиды низкой плотности (ЛПНП) – образуются из ЛПОНП за счет выхода из них триглицеридов и содержат в основном холестерин;

Читать еще:  Грудной сбор 4 повышает давление

·липопротеиды высокой плотности (ЛПВП)– транспортируют неиспользованный холестерин от тканей в печень, где из него синтезируются желчные кислоты.

Гормоны—биологически активные вещества органической природы, вырабатывающиеся в специализированных клетках желёз внутренней секреции, поступающие в кровь, связывающиеся с рецепторами клеток-мишеней и оказывающие регулирующее влияние на обмен веществ ифизиологические функции. Гормоны служат гуморальными (переносимыми с кровью) регуляторами определённых процессов в различных органах и системах.

Витамины— группа низкомолекулярных органических соединений относительно простого строения и разнообразной химической природы.

Ферменты,или энзимы— обычно белковые молекулы или молекулы РНК(рибозимы) или их комплексы, ускоряющие (катализирующие) химические реакции в живых системах.

Аминокислоты-органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы.

Продукты обмена(мочевина,азот и др)

Минеральные вещества(кальцый, натрий, калий, железо , цинк , медь)

Осмотическое давление в норме приравнивается концентрации. Натрий хлорид 0,9%(физраствор)

Клетки могут нормально существовать при нормальном осмотическом давлении.
Температура крови до 40°

Кровь имеет 37,36 pH- слабощелочная.

Ацидоз— смещение кислотно-щелочного баланса организма в сторону увеличения кислотности.

Алкалоз— нарушение кислотно-щелочного равновесия организма в сторону увеличения щелочности.

Гомеостаз—саморегуляция, способность открытой системы сохранять постоянство своего внутреннего состояния посредством скоординированных реакций, направленных на поддержание динамического равновесия.

Физико-химические свойства:

Цвет крови.Определяется наличием в эритроцитах особого белка — гемоглобина.

Относительная плотность крови. Колеблется от 1,058 до 1,062 и зависит преимущественно от содержания эритроцитов. Относительная плотность плазмы крови в основном определяется концентрацией белков и составляет 1,029—1,032.

Вязкость крови. Определяется по отношению к вязкости воды и соответствует 4,5—5,0. Вязкость крови зависит главным образом от содержания эритроцитов и в меньшей степени от белков плазмы.

Осмотическим давлением называется сила, которая заставляет переходить растворитель (для крови это вода) через полупроницаемую мембрану из менее в более концентрированный раствор. Осмотическое давление крови зависит в основном от растворенных в ней низкомолекулярных соединений, главным образом солей. Около 60% этого давления создается NaCl. Поддержание постоянства осмотического давления играет чрезвычайно важную роль в жизнедеятельности клеток.

Онкотическое давление. Является частью осмотического и зависит от содержания крупномолекулярных соединений (белков) в растворе.
PH

Онкотическое давление играет важную роль в регуляции водного обмена. Чем больше его величина, тем больше воды удерживается в сосудистом русле и тем меньше ее переходит в ткани и наоборот. Онкотическое давление влияет на образование тканевой жидкости, лимфы, мочи и всасывание воды в кишечнике. Поэтому кровезамещающие растворы должны содержать в своем составе коллоидные вещества, способные удерживать воду.

При снижении концентрации белка в плазме развиваются отеки, так как вода перестает удерживаться в сосудистом русле и переходит в ткани.

Температура крови. Во многом зависит от интенсивности обмена веществ того органа, от которого оттекает кровь, и колеблется в пределах 37—40°С. При движении крови не только происходит некоторое выравнивание температуры в различных сосудах, но и создаются условия для отдачи или сохранения тепла в организме.

Постоянство рН крови поддерживается буферными системами: гемоглобиновой, карбонатной, фосфатной и белками плазмы.

Клетки крови — формининные эллементы.

1.Клетки красного ряда-эритроциты

2.Клетки белого ряда — лейкоциты

1)Эритроцитысоставляют основную массу форменных элементов крови. Они определяют красный цвет крови. Эритроциты имеют форму двояковогнутого диска, средний диаметр которых около 7 – 8,3 мкм, не имеют ядра. Вся цитоплазма сосредоточена по краям,а в центре её мало. В норме допускаяется форма спущенного мяча.
Гемолиз — разрушение эритроцитов крови с выделением в окружающую среду гемоглобина. В норме гемолиз завершает жизненный цикл эритроцитов (120 суток) и происходит в организме человека и животных непрерывно. Патологический гемолиз происходит под влиянием гемолитических ядов, холода, некоторых лекарственных веществ (у чувствительных к ним людей) и других факторов; характерен для гемолитических анемий. По локализации процесса выделяют несколько типов гемолиза:

2.Внутрисосудистый

Скорость оседания эритроцитов(СОЭ) — это скорость разделения несвернувшейся крови в специальном капилляре на два слоя: из осевших эритроцитов (нижний слой) и прозрачной плазмы (верхний слой). СОЭ измеряется в миллиметрах в час.

СОЭ 2-10 мл в час у мужчин,до 15 мл в час у женщин.

Скорость меняется при заболевании или беременности в сторону увеличения.

2)Лейкоциты— белые кровяные клетки,они крупнее эритроцитов; неоднородная группа различных по внешнему виду и функциям клеток крови человека или животных, выделенная по признакам наличия ядра и отсутствия самостоятельной окраски.

Главная сфера действия лейкоцитов — защита. Они играют главную роль в специфической и не специфической защите организма от внешних и внутренних патогенных агентов, а также в реализации типичных патологических процессов.

Делятся на 2 группы,в зависимости есть ли зернистость в цитоплазме :

1.Зернистые — гранулоциты

2.Не зернистые — агранулоциты

1.В зависимости от особенностей восприятия ими стандартных красителей гранулоциты делят на:

1)Нейтрофилы(фагоциты)— подвижные клетки,их больше всего в цитоплазме,выполняют защитную функцию и способны к фагоцитозу(захват и поглощение).Окрашиваются в сиреневый цвет. Ядро в виде сигментов, соединяющаяся перемычками. Диаметр зрелого нейтрофила — 10-12 мкм. Живут от нескольких часов,до нескольких суток. В крови умирают быстрее.

2)Эозинофилы. Кол-во увеличивается при аллергических реакциях,глисных инвазиях, их называют «чистильщиками»,способны к фагоцитозу. Диаметр до15 мкм. Окрашиваются кислыми красками в розовый цвет. Ядро в виде сигмета.

3)Базофилы — это клетки-разведчики. Основная функция базофилов — ускорение подавления аллергенов и препятствие их распространению по всему организму. Очень крупные гранулоциты: они крупнее и нейтрофилов, и эозинофилов. Принимают активное участие в развитии аллергических реакций немедленного типа (реакции анафилактического шока. Относятся к эндокринной системе. Выделяют гистамин и гепарин. Не окрашиваются кислыми красками.

2.Не зернистые агранулоциты:

1)Моноцит-крупный зрелый одноядерный лейкоцит группы агранулоцитов диаметром 18—20 мкм. Подвижны и способны к фагоцитозу. Живут от нескольких часов до нескольких суток. Ядро почти во всю клетку,бобовидное.

2)Лимфоциты-клетки иммунной системы. Величина минимум — 4,5 мкм,максимум — 10 мкм. Ядро круглое,крупное.

2 вида:

Тл ≈ 80% — тимус зависимые.

Тимус — железа,расположенная в пространстве между легкими. Выполняет две функции: эндокринную и иммунную.

Тh хелперы (участвуют в имунных реакциях)

Тk киллеры(убийцы,принимают участие в противоопухолевых процессах)

Тs супрессоры(подавляют иммунные реакции)

Bл≈ 20% — участвуют в выработке антител(белки глобулины)

Лейкоцитарная формула:

Нейтрофилы до 65% зрелые (палочкоядерные дозревают до сигментоядерных)

Эозинофилы ≈ 1,4% — 5%

3)Тромбоциты-то небольшие (2-4 мкм) безъядерные сферические бесцветные тельца крови.

Содержит вещество тромбопластин и принимает участие в свёртывании крови.

Гемограмма— сожержание всех клеток в крови.

Эритроциты. м. 4-5*10^12, ж. 3,9-4,7*10^12 в 1 л

Гемоглабин м.130-160 г в 1 л,ж. 120-140 г в 1 л.

Цветовой показатель — степень насыщеннсоти цитоплазмы эритроцитов гемоглабином.0,85 — 1,05.

Лейкоциты 4-9*10^12 на 1 л.

Ретикулоциты — не дозревшие лейкоциты. От 2 до 10% от общего числа эритроцитов.

СОЭ м.2-10,ж. 2-15 мл в ч.

Тромбоциты 180-320*10^9 г на л

Гемостаз — комплексная реакция,направленная на остановку кровотечения.

Коагуляция(свертывание) -слипание частиц коллоидной системы и при их столкновениях в процессе теплового (броуновского)движения, перемешивания или направленного перемещения во внешнем силовом поле.

3 стадии свертывания крови:

1.Образование активного тромбопрластина. Тромбомбоцит высвобождает тромбопластин под влиянием солей кальция и других факторов превращения в активный тромбопластин.

2.Образование тромбина. Активный тромбопласин , соли кальция и другие компоненты плазмы переводят протромбин в тромбин.

3.Образование фибрина тромбина,кальций и другие факторы,переводят фибриноген в фибрин.

Фибрин— бесцветный белок,который составляет основу сгустка — тромба,состоит из отдельных нитей,образующих мономер,идёт его полимеризация.

Между нитями фибрина застревают эритроциты.

Крововтечение 5-10 минут,влияет температура.

Кровь хранят в холодильнике при теппературе 4-8°

Антикоагуляция— антисвёртывающая система,которая препятствует образованию сгустка.

Группы крови.

В 1901 году были открыты 4 группы крови. Открыл австрийски(Вена) врач Ландштейнер.

Эти группы отличаются антигенами. Содержание в эритроцитах агглютинигена АВ.

В плазме агглютинигены АВ0 α β

Правила переливания крови:

Переливается только одногруппная кровь.

Донор— тот,кто сдаёт кровь.

Реципиент — тот,кто получает кровь.

Недостаточно знать только группу. Резус-фактор rh — белок,который содержится в эритроцитах.

Ссылка на основную публикацию
Adblock
detector