Высота через давление

Гидростатическое давление

Калькулятор находит неизвестные величины по заданным, используя формулу давления столба жидкости.

Калькулятор ниже предназначен для расчета неизвестной величины по заданным, используя формулу давления столба жидкости.
Сама формула:

Калькулятор позволяет найти

  • давление столба жидкости по известным плотности жидкости, высоте столба жидкости и ускорению свободного падения
  • высоту столба жидкости по известным давлению жидкости, плотности жидкости и ускорению свободного падения
  • плотность жидкости по известным давлению жидкости, высоте столба жидкости и ускорению свободного падения
  • ускорение свободного падения по известным давлению жидкости, плотности жидкости и высоте столба жидкости

Вывод формул для всех случаев тривиален. Для плотности по умолчанию используется значение плотности воды, для ускорения свободного падения — земное ускорение, и для давления — величина равная давлению в одну атмосферу. Немного теории, как водится, под калькулятором.

Гидростатическое давление

Гидростатическое давление — давление столба воды над условным уровнем.

Формула гидростатического давления выводится достаточно просто

Из этой формулы видно, что давление не зависит от площади сосуда или его формы. Оно зависит только от плотности и высоты столба конкретной жидкости. Из чего следует, что, увеличив высоту сосуда, мы можем при небольшом объеме создать довольно высокое давление.
В 1648 г. это продемонстрировал Блез Паскаль. Он вставил в закрытую бочку, наполненную водой, узкую трубку и, поднявшись на балкон второго этажа, влил в эту трубку кружку воды. Из-за малой толщины трубки вода в ней поднялась до большой высоты, и давление в бочке увеличилось настолько, что крепления бочки не выдержали, и она треснула.

Также это приводит к такому явлению как гидростатический парадокс.

Гидростатический парадокс — явление, при котором сила весового давления налитой в сосуд жидкости на дно сосуда может отличаться от веса налитой жидкости. В сосудах с увеличивающимся кверху поперечным сечением сила давления на дно сосуда меньше веса жидкости, в сосудах с уменьшающимся кверху поперечным сечением сила давления на дно сосуда больше веса жидкости. Сила давления жидкости на дно сосуда равно весу жидкости лишь для сосуда цилиндрической формы.

На картинке вверху давление на дно сосуда по всех случаях одинакова и не зависит от веса налитой жидкости, а только от ее уровня. Причина гидростатического парадокса состоит в том, что жидкость давит не только на дно, но и на стенки сосуда. Давление жидкости на наклонные стенки имеет вертикальную составляющую. В расширяющемся кверху сосуде она направлена вниз, в сужающемся кверху сосуде она направлена вверх. Вес жидкости в сосуде будет равен сумме вертикальных составляющих давления жидкости по всей внутренней площади сосуда

Формула давления воздуха, пара, жидкости или твердого тела. Как находить давление (формула)?

Давление – это физическая величина, которая играет особую роль в природе и жизни человека. Это незаметное глазу явление не только влияет на состояние окружающей среды, но и очень хорошо ощущается всеми. Давайте разберемся, что это такое, какие виды его существуют и как находить давление (формула) в разных средах.

Что называется давлением в физике и химии

Данным термином именуется важная термодинамическая величина, которая выражается в соотношении перпендикулярно оказываемой силы давления на площадь поверхности, на которую она воздействует. Это явление не зависит от размера системы, в которой действует, поэтому относится к интенсивным величинам.

В состоянии равновесия, по закону Паскаля, давление одинаково для всех точек системы.

В физике и химии оное обозначается с помощью буквы «Р», что является сокращением от латинского названия термина – pressūra.

Если речь идет об осмотическом давлении жидкости (равновесие между давлением внутри и снаружи клетки), используется буква «П».

Единицы давления

Согласно стандартам Международной системы СИ, рассматриваемое физическое явление измеряется в паскалях (кириллицей – Па, латиницей — Ра).

Исходя из формулы давления получается, что один Па равен одному Н (ньютон — единица измерения силы) разделенному на один квадратный метр (единица измерения площади).

Однако на практике применять паскали довольно сложно, поскольку эта единица очень мала. В связи с этим, помимо стандартов системы СИ, данная величина может измеряться по-другому.

Ниже приведены наиболее известные ее аналоги. Большинство из них широко используется на просторах бывшего СССР.

  • Бары. Один бар равен 105 Па.
  • Торры, или миллиметры ртутного столба. Приблизительно один торр соответствует 133, 3223684 Па.
  • Миллиметры водяного столба.
  • Метры водяного столба.
  • Технические атмосферы.
  • Физические атмосферы. Одна атм равна 101 325 Па и 1,033233 ат.
  • Килограмм-силы на квадратный сантиметр. Также выделяются тонна-сила и грамм-сила. Помимо этого, есть аналог фунт-сила на квадратный дюйм.

Общая формула давления (физика 7-го класса)

Из определения данной физической величины можно определить способ ее нахождения. Выглядит он таким образом, как на фото ниже.

В нем F – это сила, а S – площадь. Иными словами, формула нахождения давления – это его сила, разделенная на площадь поверхности, на которую оно воздействует.

Также она может быть записана так: Р = mg / S или Р = pVg / S. Таким образом, эта физическая величина оказывается связанной с другими термодинамическими переменными: объемом и массой.

Для давления действует следующий принцип: чем меньше пространство, на которое влияет сила – тем большее количество давящей силы на него приходится. Если, же площадь увеличивается (при той же силе) – искомая величина уменьшается.

Формула гидростатического давления

Разные агрегатные состояния веществ, предусматривают наличие у них отличных друг от друга свойств. Исходя из этого, способы определения Р в них тоже будут другими.

К примеру, формула давления воды (гидростатического) выглядит вот так: Р = pgh. Также она применима и к газам. При этом ее нельзя использовать для вычисления атмосферного давления, из-за разности высот и плотностей воздуха.

В данной формуле р – плотность, g – ускорение свободного падения, а h – высота. Исходя из этого, чем глубже погружается предмет или объект, тем выше оказываемое на него давление внутри жидкости (газа).

Рассматриваемый вариант является адаптацией классической примера Р = F / S.

Читать еще:  Диагностика рассеянного склероза у женщин

Если вспомнить, что сила равна производной массы на скорость свободного падения (F= mg), а масса жидкости – это производная объема на плотность (m = pV), то формулу давление можно записать как P = pVg / S. При этом объем – это площад, умноженная на высоту (V = Sh).

Если вставить эти данные, получится, что площадь в числителе и знаменателе можно сократить и на выходе — вышеупомянутая формула: Р = pgh.

Рассматривая давление в жидкостях, стоит помнить, что, в отличие от твердых тел, в них часто возможно искривление поверхностного слоя. А это, в свою очередь, способствует образованию дополнительного давления.

Для подобных ситуаций применяется несколько другая формула давления: Р = Р + 2QH. В данном случае Р – давление не искривленного слоя, а Q – поверхность натяжения жидкости. Н – это средняя кривизна поверхности, которую определяют по Закону Лапласа: Н = ½ (1/R1+ 1/R2). Составляющие R1 и R2 – это радиусы главной кривизны.

Парциальное давление и его формула

Хотя способ Р = pgh применим как для жидкостей, так и для газов, давление в последних лучше вычислять несколько другим путем.

Дело в том, что в природе, как правило, не очень часто встречаются абсолютно чистые вещества, ведь в ней преобладают смеси. И это касается не только жидкостей, но и газов. А как известно, каждый из таких компонентов осуществляет разное давление, называемое парциальным.

Определить его довольно просто. Оно равно сумме давления каждого компонента рассматриваемой смеси (идеальный газ).

Из этого следует, что формула парциального давления выглядит таким образом: Р = Р1+ Р2+ Р3… и так далее, согласно количеству составляющих компонентов.

Нередки случаи, когда необходимо определить давление воздуха. Однако некоторые по ошибке проводят вычисления только с кислородом по схеме Р = pgh. Вот только воздух — это смесь из разных газов. В нем встречаются азот, аргон, кислород и другие вещества. Исходя из сложившейся ситуации, формула давления воздуха — это сумма давлений всех его составляющих. А значит, следует приметь вышеупомянутую Р = Р1+ Р2+ Р3

Наиболее распространенные приборы для измерения давления

Несмотря на то что высчитать рассматриваемую термодинамическую величину по вышеупомянутым формулам не сложно, проводить вычисление иногда попросту нет времени. Ведь нужно всегда учитывать многочисленные нюансы. Поэтому для удобства за несколько столетий был разработан ряд приборов, делающих это вместо людей.

Фактически почти все аппараты такого рода являются разновидностями манометра (помогает определять давление в газах и жидкостях). При этом они отличаются по конструкции, точности и сфере применения.

  • Атмосферное давление измеряется с помощью манометра, именуемого барометром. Если необходимо определить разряжение (то есть давление ниже атмосферного) — применяются другая его разновидность, вакуумметр.
  • Для того чтобы узнать артериальное давление у человека, в ход идет сфигмоманометр. Большинству он более известен под именем неинвазивного тонометра. Таких аппаратов существуют немало разновидностей: от ртутных механических до полностью автоматических цифровых. Их точность зависит от материалов, из которых они изготавливаются и места измерения.
  • Перепады давления в окружающей среде (по-английски — pressure drop) определяются с помощью дифференциальных манометров или дифнамометров (не путать с динамометрами).

Виды давления

Рассматривая давление, формулу его нахождения и ее вариации для разных веществ, стоит узнать о разновидностях этой величины. Их пять.

Абсолютное

Так называется полное давление, под которым находится вещество или объект, без учета влияния других газообразных составляющих атмосферы.

Измеряется оно в паскалях и являет собою сумму избыточного и атмосферного давлений. Также он является разностью барометрического и вакуумметрического видов.

Вычисляется оно по формуле Р = Р2 + Р3 или Р = Р2 — Р4.

За начало отсчета для абсолютного давления в условиях планеты Земля, берется давление внутри емкости, из которой удален воздух (то есть классический вакуум).

Только такой вид давления используется в большинстве термодинамических формул.

Барометрическое

Этим термином именуется давление атмосферы (гравитации) на все предметы и объекты, находящие в ней, включая непосредственно поверхность Земли. Большинству оно также известно под именем атмосферного.

Его причисляют к термодинамическим параметрам, а его величина меняется относительно места и времени измерения, а также погодных условий и нахождения над/ниже уровня моря .

Величина барометрического давления равна модулю силы атмосферы на площади единицу по нормали к ней.

В стабильной атмосфере величина данного физического явления равна весу столпа воздуха на основание с площадью, равной единице.

Норма барометрического давления — 101 325 Па (760 мм рт. ст. при 0 градусов Цельсия). При этом чем выше объект оказывается от поверхности Земли, тем более низким становится давление на него воздуха. Через каждый 8 км оно снижается на 100 Па.

Благодаря этому свойству в горах вода в чайниках закивает намного быстрее, чем дома на плите. Дело в том, что давление влияет на температуру кипения: с его снижением последняя уменьшается. И наоборот. На этом свойстве построена работа таких кухонных приборов , как скороварка и автоклав. Повышение давления внутри их способствуют формированию в посудинах более высоких температур, нежели в обычных кастрюлях на плите.

Используется для вычисления атмосферного давления формула барометрической высоты. Выглядит она таким образом, как на фото ниже.

Р – это искомая величина на высоте, Р – плотность воздуха возле поверхности, g – свободного падения ускорение, h – высота над Землей, м – молярная масса газа, т – температура системы, r – универсальная газовая постоянная 8,3144598 Дж⁄(моль х К), а е – это число Эйклера, равное 2.71828.

Часто в представленной выше формуле давления атмосферного вместо R используется К – постоянная Больцмана. Через ее произведение на число Авогадро нередко выражается универсальная газовая постоянная. Она более удобна для расчетов, когда число частиц задано в молях.

При проведении вычислений всегда стоит брать во внимание возможность изменения температуры воздуха из-за смены метеорологической ситуации или при наборе высоты над уровнем моря, а также географическую широту.

Избыточное и вакуумметрическое

Разницу между атмосферным и измеренным давлением окружающей среды называют избыточным давлением. В зависимости от результата, меняется название величины.

Читать еще:  Давление на мазе

Если она положительная, ее называют манометрическим давлением.

Если же полученный результат со знаком минус – его именуют вакуумметрическим. Стоит помнить, что он не может быть больше барометрического.

Дифференциальное

Данная величина является разницей давлений в различных точках измерения. Как правило, ее используют для определения падения давления на каком-либо оборудовании. Особенно это актуально в нефтедобывающей промышленности.

Разобравшись с тем, что за термодинамическая величина называется давлением и с помощью каких формул ее находят, можно сделать вывод, что это явление весьма важно, а потому знания о нем никогда не будут лишними.

Расчет давления жидкости на дно и стенки сосуда

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

В ходе этого урока с помощью математических преобразований и логических умозаключений будет получена формула для расчета давления жидкости на дно и стенки сосуда.

Тема: Давление твердых тел, жидкостей и газов

Урок: Расчет давления жидкости на дно и стенки сосуда

1. Вывод формулы для давления жидкости на дно сосуда

Для того чтобы упростить вывод формулы для расчета давления на дно и стенки сосуда, удобнее всего использовать сосуд в форме прямоугольного параллелепипеда (Рис. 1).

Рис. 1. Сосуд для расчета давления жидкости

Площадь дна этого сосуда – S, его высота – h. Предположим, что сосуд наполнен жидкостью на всю высоту h. Чтобы определить давление на дно, нужно силу, действующую на дно, разделить на площадь дна. В нашем случае сила – это вес жидкости P, находящейся в сосуде

Поскольку жидкость в сосуде неподвижна, ее вес равен силе тяжести, которую можно вычислить, если известна масса жидкости m

Напомним, что символом g обозначено ускорение свободного падения.

Для того чтобы найти массу жидкости, необходимо знать ее плотность ρ и объем V

Объем жидкости в сосуде мы получим, умножив площадь дна на высоту сосуда

Эти величины изначально известны. Если их по очереди подставить в приведенные выше формулы, то для вычисления давления получим следующее выражение:

В этом выражении числитель и знаменатель содержат одну и ту же величину S – площадь дна сосуда. Если на нее сократить, получится искомая формула для расчета давления жидкости на дно сосуда:

Итак, для нахождения давления необходимо умножить плотность жидкости на величину ускорения свободного падения и высоту столба жидкости.

2. Давление жидкости на стенки сосуда

Полученная выше формула называется формулой гидростатического давления. Она позволяет найти давление на дно сосуда. А как рассчитать давление на боковые стенки сосуда? Чтобы ответить на этот вопрос, вспомним, что на прошлом уроке мы установили, что давление на одном и том же уровне одинаково во всех направлениях. Это значит, давление в любой точке жидкости на заданной глубине h может быть найдено по той же формуле.

3. Анализ и примеры применения полученной формулы

Рассмотрим несколько примеров.

Возьмем два сосуда. В одном из них находится вода, а в другом – подсолнечное масло. Уровень жидкости в обоих сосудах одинаков. Одинаковым ли будет давление этих жидкостей на дно сосудов? Безусловно, нет. В формулу для расчета гидростатического давления входит плотность жидкости. Поскольку плотность подсолнечного масла меньше, чем плотность воды, а высота столба жидкостей одинакова, то масло будет оказывать на дно меньшее давление, чем вода (Рис. 2).

Рис. 2. Жидкости с различной плотностью при одной высоте столба оказывают на дно различные давления

Еще один пример. Имеются три различных по форме сосуда. В них до одного уровня налита одна и та же жидкость. Будет ли одинаковым давление на дно сосудов? Ведь масса, а значит, и вес жидкостей в сосудах различен. Да, давление будет одинаковым (Рис. 3). Ведь в формуле гидростатического давления нет никакого упоминания о форме сосуда, площади его дна и весе налитой в него жидкости. Давление определяется исключительно плотностью жидкости и высотой ее столба.

Рис. 3. Давление жидкости не зависит от формы сосуда

4. Заключение

Мы получили формулу для нахождения давления жидкости на дно и стенки сосуда. Этой формулой можно пользоваться и для расчета давления в объеме жидкости на заданной глубине. Она может быть использована для определения глубины погружения аквалангиста, при расчете конструкции батискафов, подводных лодок, для решения множества других научных и инженерных задач.

Список литературы

  1. Перышкин А. В. Физика. 7 кл. – 14-е изд., стереотип. – М.: Дрофа, 2010.
  2. Перышкин А. В. Сборник задач по физике, 7–9 кл.: 5-е изд., стереотип. – М: Издательство «Экзамен», 2010.
  3. Лукашик В. И., Иванова Е. В. Сборник задач по физике для 7–9 классов общеобразовательных учреждений. – 17-е изд. – М.: Просвещение, 2004.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Единая коллекция цифровых образовательных ресурсов (Источник).
  2. Единая коллекция цифровых образовательных ресурсов (Источник).

Домашнее задание

  1. Лукашик В. И., Иванова Е. В. Сборник задач по физике для 7–9 классов №504–513.

Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.

Атмосферное давление.

Атмосферное давление обуславливается весом воздуха. 1 м³ воздуха весит 1,033 кг. На каждый метр поверхности земли приходится давление воздуха силой 10033 кг. Под этим подразумевается столб воздуха высотой от уровня моря до верхних слоев атмосферы. Если сравнить его со столбом воды, то диаметр последнего имел бы высоту всего 10 метров. То есть, атмосферное давление создается собственной массой воздуха. Величина атмосферного давления на единицу площади соответствует массе воздушного столба, находящегося над нею. В результате увеличения воздуха в этом столбе происходит рост давления, а при уменьшении воздуха — падение. Нормальным атмосферным давлением считается давление воздуха при t 0°С на уровне моря на широте 45°. В этом случае атмосфера давит с силой 1,033 кг на каждый 1 см² площади земли. Масса этого воздуха уравновешивается ртутным столбиком высотой 760 мм. На этой взаимосвязи и измеряется атмосферное давление. Оно измеряется в миллиметрах ртутного столба или миллибарах(мб), а так же в гектопаскалях. 1мб = 0,75 мм рт.ст., 1 гПа = 1 мм.

Читать еще:  Давление на море повысилось

Измерение атмосферного давления.

Атмосферное давление измеряется с помощью барометров. Они бывают двух типов.

1. Ртутный барометр представляет собой стеклянную трубку, которая запаяна сверху, а открытым концом погружена в металлическую чашу с ртутью. Рядом с трубкой крепится шкала, показывающая изменение давления. На ртуть действует давление воздуха, которое своим весом уравновешивает столбик ртути в стеклянной трубке. Высота ртутного столба меняется при изменении давления.

2. Металлический барометр или анероид представляет собой гофрированную металлическую коробку, которая герметично закрыта. Внутри этой коробки находится разреженный воздух. Изменение давления заставляет колебаться стенки коробки, вдавливаясь или выпячиваясь. Эти колебания системой рычагов заставляют стрелку перемещаться по шкале с делениями.

Самопишущие барометры или барографы предназначены для записи изменений атмосферного давления. Перо улавливает колебание стенок анероидной коробки и чертит линию на ленте барабана, который вращается вокруг своей оси.

Каким бывает атмосферное давление.

Атмосферное давление на земном шаре изменяется в широких пределах. Его минимальная величина — 641,3 мм рт.ст или 854 мб была зарегистрирована над Тихим океаном в урагане «Ненси», а максимальная — 815,85 мм рт.ст. или 1087 мб в Туруханске зимой.

Давление воздуха на земную поверхность изменяется с высотой. Среднее значение атмосферного давления над уровнем моря — 1013 мб или 760 мм рт.ст. Чем больше высота, тем меньше атмосферное давление, так как воздух становится все более разреженным. В нижнем слое тропосферы до высоты 10 м оно снижается на 1 мм рт.ст. на каждые 10 м или на 1 мб на каждые 8 метров. На высоте 5 км оно меньше в 2 раза, 15 км — в 8 раз, 20 км — в 18 раз.

В связи с перемещением воздуха, изменением температуры, сменой времени года атмосферное давление постоянно меняется. Дважды за сутки, утром и вечером, оно повышается и столько же раз понижается, после полуночи и после полудня. В течение года из-за холодного и уплотненного воздуха зимой атмосферное давление имеет максимальную величину, а летом — минимальную.

Атмосферное давление постоянно меняется и распределяется по поверхности земли зонально. Это происходит из-за неравномерного прогревания Солнцем земной поверхности. На изменение давления влияет перемещение воздуха. Там, где воздуха становится больше, давление высокое, а там, откуда воздух уходит — низкое. Воздух, прогревшись от поверхности, поднимается вверх и давление на поверхность понижается. На высоте воздух начинает охлаждаться, уплотняется и опускается на близлежащие холодные участки. Там возрастает атмосферное давление. Следовательно, изменение давления обуславливается перемещением воздуха в результате его нагревания и охлаждения от земной поверхности.

Атмосферное давление в экваториальной зоне постоянно понижено, а в тропических широтах — повышено. Это происходит из-за постоянно высоких температур воздуха на экваторе. Нагретый воздух поднимается и уходит в сторону тропиков. В Арктике и Антарктике поверхность земли всегда холодная, а атмосферное давление повышено. Его обуславливает воздух, который приходит из умеренных широт. В свою очередь в умеренных широтах из-за оттока воздуха формируется зона пониженного давления. Таким образом, на Земле существуют два пояса атмосферного давления — пониженный и повышенный. Пониженный на экваторе и в двух умеренных широтах. Повышенный на двух тропических и двух полярных. Они могут немного смещаться в зависимости от времени года вслед за Солнцем в сторону летнего полушария.

Полярные пояса высокого давления существуют весь год, однако, летом они сокращаются, а зимой, наоборот, расширяются. Круглый год области пониженного давления сохраняются близ Экватора и в южном полушарии в умеренных широтах. В северном полушарии все происходит по-другому. В умеренных широтах северного полушария давление над материками сильно повышается и поле низкого давления как бы «разрывается»: сохраняется оно только над океанами в виде замкнутых областей пониженного атмосферного давления — Исландского и Алеутского минимумов. Над материками, где заметно повысилось давление, образуются зимние максимумы: Азиатский (Сибирский) и Северо-Американский (Канадский). Летом поле пониженного давления в умеренных широтах северного полушария восстанавливается. При этом над Азией формируется обширная область пониженного давления. Это — Азиатский минимум.

В поясе повышенного атмосферного давления — тропиках — материки нагреваются сильнее океанов и давление над ними ниже. Из-за этого над океанами выделяют субтропические максимумы:

  • Северо-Атлантический (Азорский);
  • Южно-Атлантический;
  • Южно-Тихоокеанский;
  • Индийский.

Несмотря на крупномасштабные сезонные изменения своих показателей, пояса пониженного и повышенного атмосферного давления Земли — образования довольно устойчивые.

Формула давления жидкости и газа

Формула давления жидкости и газа:

Вспомним, что масса (m) равна плотности (ρ) умноженной на объем (V):

Объем (V) вычисляется по формуле: высота (h) умноженная на площадь (S):

значит, масса равна:

Формулу веса мы тоже уже знаем:

Подставим в вес получившуюся массу:

А давление (p) — это вес (P) деленный на площадь (S):

S мы сокращаем, получаем формулу давления жидкости:

p = gρh

g у нас постоянная величина у Земли (9,81 Н/кг).

Значит, чтобы рассчитать давление жидкости нам надо знать только её плотность (для воды — это совсем просто, примерно 1000 кг/м 3 ) и высоту столба жидкости (для этого запомните картинку ниже).

Проверим формулу, подстановкой величин:

Н/м 2 = Н/кг * кг/м 3 * м

Выглядит всё верно, ведь после сокращения килограммов и метров, останется Н/м 2

Именно поэтому, если поместить в жидкость какое-то тело, то оно будет подвергаться выталкиванию, т.к. столб воды, давящий на тело сверху, будет оказывать меньшее давление, чем более высокий столб воды, давящий снизу. Поэтому в воде намного легче поднять, например, человека.

И помните, эта выталкивающая сила будет всегда направлена против силы притяжения, т.е. вверх.

Это аналогично и для газов, но их выталкивание будет значительно слабее.

Редактировать этот урок и/или добавить задание и получать деньги постоянно* Добавить свой урок и/или задания и получать деньги постоянно

Добавить новость и получить деньги

Добавить анкету репетитора и получать бесплатно заявки на обучение от учеников

Ссылка на основную публикацию
Adblock
detector