Замеры звукового давления

Расчет звукового давления для систем оповещения, количество и мощность

Доброго времени, дорогие читатели блога.

Я думаю, Вы уже слышали о том, что не так давно законодательством

были ужесточены меры в области производства , монтажа и проектирования громкоговорящих устройств.

Конкретно, речь идет о том, чтобы правильно выполнять расчет звукового давления для систем оповещения о пожаре.

Наверное, всем хотя бы раз доводилось слышать о том, как диспетчер объявляет о приближении поезда на железнодорожной станции.

Помехи, которые создает рупор при разговоре, почти не позволяют разобрать, когда и на какую платформу прибудет пассажирский состав.

Тем более строгие требования должны предъявляться к устройствам, которые обычно работают в критической ситуации, порой,

при массовом скоплении людей с возникновением паники.

Давайте с Вами узнаем, как правильно рассчитать звуковое давление, которое

позволяет четко слышать голос говорящего для такого прибора, определим способ расчета создаваемого давления.

Для этого произведем типовой акустический расчет. Поехали.

Характеристики устройств

Сначала определим характеристики громкоговорителей, которые определяют качество их работы.

К ним относятся:

  1. диапазон рабочих частот;
  2. направленность;
  3. давление на дистанции 1 метра от источника звука.

Диапазон частоты зависит от назначения комплекса в целом.

Например, диспетчерская трансляция или просто акустический фон могут работать на частоте 200-5000 Гц.

Но для озвучки более высокого качества необходима частота 100-10000 Гц.

По второй опции выделяют направленные и ненаправленные оповещатели.

К первому типу относим излучатели рупорного типа.

Они имеют высокий уровень давления и угол направленности звука, равный приблизительно 30 ° и работают на узкой частотной полосе.

Другой тип – это различные колонки, потолочные громкоговорители, динамики.

Звуковое давление здесь имеет невысокий показатель, а область распространения звука равна примерно 60 °.

Что касается самого уровня звукового давления, то это расчетная характеристика.

Ее-то нам и предстоит посчитать.

Между ней и электрической мощностью прибора есть некая зависимость.

Так как чем мощнее устройство, тем громче звук, который создается звуковым давлением.

Лишь часть электроэнергии, определяющаяся КПД излучателя, преобразуется в звук.

Кроме того, некоторые производители измеряют величину уровня

звукового давления в Паскалях, а другие устанавливают значение давления в децибелах.

Кроме того, верность электроакустического расчета определяется следующими дополнительными критериями.

  • Давление звука от оповещателя должно равняться величине не менее 75 дБ на расстоянии 3 м от излучателя.
  • Величина того же давления в определенной точке должна находиться на отметке выше величины среднестатистического шума помещения на 15 дБ.
  • Если монтаж разговорного устройства ведется на потолке, необходимо учесть высоту стен.

Нормирование

Все основные положения, регламентирующие порядок расчета и монтажа систем СОУЭ приведены в СП 3.13130.2009

Там же приведены все требования к звуковым противопожарным системам.

В нем изложены уровни шума для разных типов помещений, порядок расчета верного

расположения громкоговорителей, их количества, способы установки системы и пр.

Очень важной характеристикой является максимальный шум помещения, который

определяется соответствующим ГОСТом.

Приведем здесь таблицу шумов согласно ГОСТ 12.1.036-81 Система стандартов безопасности труда. ШУМ.

Допустимые уровни в жилых и общественных зданиях.

В случае, когда у нас используются разные типы громкоговорителей на всей площади объекта,

целесообразно знать угол, под которым звук распределяется равномерно.

Эта величина для разных видов оповещателей составляет следующие значения:

  • потолочный: 80-90 °;
  • настенный: 75-90°;
  • прожекторный: 30-45 °;
  • рупорный: 30-45 °.

Кроме того, уровень нашей трансляции через речевые устройства обязательно должен

превышать шум помещения или открытой площади для разных типов транслирования на соответствующие значения.

  • Высококачественная музыка, звуки: на 15-20 дБ.
  • Аварийное оповещение: на 7-10 дБ.
  • Фоновая музыка, звуки, сигналы: на 5-6 дБ.

При расчете давления звука всегда допускается некая погрешность.

Все помещения по своим размерам условно делятся на три вида:

  1. «Коридор»: его длина больше, чем ширина в 2 и более раз;
  2. «Комната»: площадь такого помещения не превышает 40 кв. м;
  3. «Зал»: здесь площадь должна быть более 40 кв. м.

Учет и соблюдение этих норм при проектировании, расчете, установки системы СОУЭ

позволит построить устойчивый комплекс вещания за разумные деньги.

Расчет необходимого количества громкоговорителей

Приводим общую формулу для расчета количества оповещателей, которые необходимы для озвучивания помещения определенной площади.

Вычисление выполняем, заранее зная размеры территории, которую может озвучить один прибор.

K = int(Sп / Sгр),

  • Sп – размер площади, которую надо озвучивать, кв. м;
  • Sгр – размер эффективной площади для озвучивания одним оповещателем, кв. м;
  • Int – округление результата до целого значения.

Типовой расчет системы оповещения

При проведении расчета высоту установки оповещателей от пола примем равным 2,3 метра, т.е. заранее известной величиной.

Наш расчет ведется для пожарного оповещателя ПКИ-1 «Иволга», чье гарантированное давление звука, по техническому паспорту, равняется 95 Дб. Тогда:

  1. Согласно испытаниям, проводимым до стадии проектирования, средний максимальный уровень фона с помощью прибора «Шумомер», равняется 55 Дб. (Когда под рукой нет этого прибора, можно использовать данные ГОСТа из таблицы выше).
  2. Далее вычисляем минимально допустимый уровень надфона, который производит система в нашем помещении (согласно п. 4.2, СП3.13130.2009 прибавляемая величина равна 15 Дб): 15 + 55 = 70 Дб.
  3. Определяем расстояние от громкоговорителя до органа человеческого слуха, принимая среднюю высоту человеческого уха пола равную 1,5 м: 2,3 – 1,5 = 0,8 м.
  4. Рассчитываем величину гашения звука на дистанции 3 м (согласно СП3.13130.2009): по следующей формуле: lg (3) * 20 = 9,5 Дб. (20 – значение ГОСТа).
  5. Следовательно, искомое минимальное давление звука громкоговорителя (иначе минимальная мощность пожарной сирены), будет равняться: 15 +55 + lg (0,8) * 20 = 15 + 55 + 0 = 70 Дб.
  6. Согласно принятому ранее значению 95 Дб для ПКИ-1 «Иволга» давление на дистанции 3 м от оповещателя определяется как разность мощности разговорного устройства и величины затухания звука (п. 4), т.е.: 95 – 9,5 = 85,5 Дб (что удовлетворяет требованию).
  7. На принятой дистанции 1,5 м от пола давление составит: 95 – lg (2,3 – 1,5) * 20 = 95 – lg (0,8) * 20 = 95 – 0 = 95 (выполнено требование ГОСТа).
  8. Вычисляем давление на 17 метрах и при 1,5 м над нижним уровнем: 95 – (lg (17) * 20 + lg (0,8) * 20) = 95 – (24,6+0) = 70,4 Дб. (необходимое условие также удовлетворено).
  9. Там, где есть препятствия для прохода звука, например, входная или противопожарная дверь, максимальная величина звукового давления понижается на 20-40 %.
  10. Если есть громоздкие предметы — шкафы, стеллажи, антресоли и пр. – на 10 %.

Отдельно заметим, что инспекторы по пожарной безопасности не ищут легких путей и

довольно часто замеряют звуковое давление в самом дальнем уголке помещения.

При обнаружении какого-либо несоответствия, оно тут же берется на карандаш, что

впоследствии может обернуться неприятностями.

Поэтому электроакустический расчет при проектировании СОУЭ всегда следует

прорабатывать очень внимательно.

Требования пожарной безопасности к системам СОУЭ

Не забудем, что для того чтобы правильно выполнить расчет необходимо знать и выполнять все требования,

предъявляемые службой к помещению или отдельно стоящему зданию.

Приведем эти требования здесь.

  • Сигналы звуковой системы должны показывать уровень звука от 75 дБА на дистанции 3 м от излучателя до 120 дБА в любом месте замера.
  • Также звук от оповещателя должен превышать установленный шум в помещении не менее чем на 15 дБА.
  • Замер звука должен производиться в 1,5 м от пола.
  • Для спальных помещений верхняя планка уровня звука ограничивается 70 дБА.
  • В этом случае замер производится для лежащего человека на уровне его головы.
  • Верхняя часть настенного громкоговорителя должна находиться на дистанции не менее 2,3 м от пола, длина от верхней части оповещателя до потолка – не менее 150 мм.
  • В помещениях с шумом более 95 дБА звуковые сирены должны устанавливаться и работать вместе со световыми оповещателями (монотонными или мигающими).
  • Для речевых оповещателей звуковые частоты должны лежать в отрезке от 200 до 5000 Гц.
  • Недопустима чрезмерная концентрация, а также неравномерное распределение звука по пространству объекта.
  • Звуковые и речевые сирены должны выдавать уровень звука, удовлетворяющий требованиям пожарной безопасности.

Что следует запомнить

Дорогие читатели, на этом можем закончить наш типовой расчет.

Приведенная здесь методика вычисления звукового давления системы СОУЭ дает

пространное представление о самом понятии систем звукового оповещения, количественных характеристиках таких систем, о том,

как не ошибиться в расчете, чтобы избежать проблем с пожарной инспекцией.

Читайте наш блог, совершайте подписки в социальных сетях и будьте здоровы!

Похожие статьи

Понравилась статья ? Поделитесь с друзьями!

Звуковое давление или что такое громкость

Звук – разновидность кинетической энергии, которая называется «акустической» и представляет собой пульсацию давления, возникающую в физической среде при прохождении звуковой волны.

Читать еще:  Давление света на зеркальную поверхность

Интенсивность звука – сила звука, средняя по времени энергия, переносимая звуковой волной через единичную площадку, перпендикулярную к направлению распространения волны в единицу времени.

Громкость звука – субъективная величина слухового ощущения, которая зависит от интенсивности звука и его частоты. При неизменной частоте громкость звука растет с увеличением интенсивности. При одинаковой интенсивности наибольшей громкостью обладают звуки в диапазоне частот 700-6000 Гц. Ну- левой уровень громкости звука соответствует звуковому давлению 20 мкПа и силе звука 10-12 Вт/м2 при частоте 1 кГц.

Звуковое давление – звуковая энергия, которая попадает на единицу площади, расположенную в заданном направлении от источника звука и удаленную от него на определенное расстояние (как правило, на 1 м). Звуковое давление измеряется в паскалях (Па).

Децибел – логарифмическая единица уровней, затуханий и усилений, безразмерная носительная характеристика, позволяющая сравнивать между собой нужные величины:

Полный период колебания волны (звукового давления) состоит из полупериода сжатия (повышения давления) и последующего полупериода разряжения молекул воздуха (понижения давления). Звуки с большей амплитудой (громкие) вызывают более сильное сжатие и разряжение молекул воздуха, чем звуки с меньшей амплитудой (тихие).

В зависимости от контекста существует множество различных определений звука:

Звук – это упругие волны, продольно распространяющиеся в среде и создающие в ней механические колебания. Чтобы понять, как распространяются данные волны, дополним это определение:
Звук – это процесс последовательной передачи колебательного состояния в упругой среде.

В современной физике утвердился взгляд, при котором многие процессы отождествляют с энергией.

Звук – это разновидность кинетической энергии, которая называется «акустической» и представляет собой пульсацию давления, возникающую в физической среде при прохождении звуковой волны. Звук распространяется по волновым законам, следовательно, к нему применимы такие общие физические понятия, как интерференция и дифракция. Результатом интерференции может быть как усиление, так и уменьшение уровня звука, например, при сложении одного и того же сигнала, но с различной фазировкой. При расчете параметров звукового поля на открытых пространствах следует учитывать множество различных факторов, например, влажность, ветер, температуру, например, при высокой температуре звук распространяется вверх, а при низкой температуре – вниз.

В акустике присутствует множество различных факторов, которые необходимо учитывать при выборе и расстановке звукового оборудования и микшерного пульта. Одним из таких факторов является реверберация. Звук в закрытых или открытых пространствах распространяется по разному. Стены комнаты отражают звуковые волны, тогда как на открытой площадке волны проходят практически без столкновений с какими-либо препятствиями. В закрытом пространстве за счет отражений уровень звука выше. В открытом пространстве звук распространяется практически по прямой. Прямой звук идентичен оригиналу по качеству и форме. Отраженный звук, наоборот, сильно зависит от отражающей способности места (после неопределенного числа отражений, достигает слушателя со всех сторон, и слушатель не может точно установить точку его происхождения). Распространение звука в этом случае происходит через первичные и вторичные отражения исходного звука от горизонтальных и вертикальных поверхностей помещения. Уровень отражения в большой степени зависит от характера стен, типа материала, из которого они сделаны, их гладкости, поглощающих свойств и изменения поглощения на раз-личных частотах. Мебель также может играть решающую роль в распространении звука – в зависимости от ее расстановки и поглощающей способности. Слушателю приходится воспринимать как прямой, так и отраженный звук. Время, с момента, в который звуковой источник прекращает излучать до момента, в который звук больше не воспринимается, определяется как время реверберации. Замечено, что любая среда характеризуется собственной «музыкальной окраской», связанной с распространением отраженных звуков и временем реверберации, которое и характеризует эту среду. Единственной переменной в уже существующей структуре остается мебель. Наилучшие результаты могут быть получены, когда принимается во внимание конструкция мебели, материал, из которого она сделана и ее расстановка в помещении.

Реверберация – это явление, которое возникает, когда слышен не прямой звук от источника, а отраженный от встречающихся на пути звуковой волны препятствий или помех различного характера. Для предотвращения нежелательного воздействия отраженного звука на прямой необходимо, чтобы последний, при задержке более чем на 50 мс, достигал слушателя уменьшенным не более чем на 10 дБ. Время реверберации пропорционально объему окружающего пространства и обратно пропорционально суммарному поглощению поверхностей, составляющих ее. Отраженный звук, который достигает уха слушателя через 40-50 мс после прямого, расценивается как усиление, окраска первоначального звука. Отраженные звуки, которые доходят с задержкой 50-80 мс, наоборот, искажают первоначальный сигнал и могут стать причиной потери разборчивости.

Звуковое давление – звуковая энергия, которая попадает на единицу площади, расположенную в заданном направлении от источника звука и удаленную от него на определенное расстояние (как правило, на 1 м). Звуковое давление измеряется в паскалях (Па).

Уровень звукового давления (англ. SPL, Sound Pressure Level) – значение звукового давления, измеренное по относительной шкале, отнесённое к опорному давлению Рspl = 20 мкПа, соответствующему порогу слышимости синусоидальной звуковой волны частотой 1 кГц. SPL измеряется в децибелах (дБ). Децибелы, в отличие от паскалей, чаще применяются на практике из-за большего удобства. Считается, что человек слышит в диапазоне 0-120 дБ (20 — 20000000 мкПа). В таблице 2.2 приведена зависимость между звуковым давлением в мкПа и уров-нем звука в дБ.

Замеры звукового давления

Что такое шум?

Шумы создаются звуковыми волнами, возникающими при расширении и сжатии в воздухе и других средах. В системах кондиционирования и вентиляции шумы могут возникать и распространяться в воздухе, корпусах воздуховодов, передвигающихся по трубам жидкостях и т.д.

Шумы могут иметь различную частоту и интенсивность.

Скорость распространения звука

Шум распространяется с гораздо меньшей скоростью, чем световые волны. Скорость звука в воздухе — примерно 330 м/с. В жидкостях и твердых телах скорость распространения шума выше, она зависит от плотности и структуры вещества.

Пример: скорость звука в воде равна 1.4 км/с, а в стали — 4.9 км/с.

Частота шума

Основной параметр шума — его частота (число колебаний в секунду). Единица измерения частоты — 1 герц (Гц), равный 1 колебанию звуковой волны в секунду.

Человеческий слух улавливает колебания частот от 20 Гц до 20000Гц. При работе систем кондиционирования учитывают обычно спектр частот от 60 до 4000Гц.

Для физических расчетов слышимая полоса частот делится на 8 групп волн. В каждой группе определена средняя частота: 62 Гц, 125 Гц, 250 Гц, 500 Гц, 1000 Гц, 2 кГц, 4 кГц и 8 кГц. Любой шум раскладывается по группам частот, и можно найти распределение звуковой энергии по различным частотам.

Мощность звука

Мощность звука какой-либо установки — это энергия, которая выделяется установкой в виде шума за единицу времени. Измерять силу шума в стандартных единицах мощности неудобно, т.к. спектр звуковых частот очень широк, и мощность звуков отличается на много порядков.

Пример: сила шума при поступлении в помещение воздуха под низким давлением равна одной стомиллиардной ватта, а при взлете реактивного самолета сила шума достигает 1000 Вт.

Поэтому уровень мощности звука измеряют в логарифмических единицах — децибелах (дБ). В децибелах сила шума выражается двух- или трехзначными числами, что удобно для расчетов.

Уровень мощности звука в дБ — функция отношения мощности звуковых волн возле источника шума к нулевому значению W, равному 10 -12 Вт. Уровень мощности рассчитывается по формуле:

Lw = 10lg(W/W0)

Пример: если мощность звука вблизи источника равна 10 Вт, то уровень мощности составит 130 дБ, а если мощность звука равна 0.001 Вт, то уровень мощности — 90 дБ.

Мощность звука и уровень мощности независимы от расстояния до источника шума. Они связаны лишь с параметрами и режимом работы установки, поэтому важны для проектирования и сравнения различных систем кондиционирования и вентиляции.

Уровень мощности нельзя измерить непосредственно, он определяется косвенно специальным оборудованием.

Уровень давления звука

Уровень давления звука Lp — это ощущаемая интенсивность шума, измеряемая в дБ.

Lp = P/P0

Здесь P — давление звука в измеряемом месте, мкПа, а P = 2 мкПа — контрольная величина.

Уровень звукового давления зависит от внешних факторов: расстояния до установки, отражения звука и т.д. Наиболее простой вид имеет зависимость уровня давления от расстояния. Если известен уровень мощности шума Lw, то уровень звукового давления Lp в дБ на расстоянии r (в метрах) от источника вычисляется так:

Lp = Lw — lgr — 11

Читать еще:  Ишемия коркового слоя почек

Пример: мощность звука холодильного блока равна 78 дБ. Уровень звукового давления на расстоянии 10 м от него равен: (78 — lg10 — 11) дБ = 66 дБ.

Если известен уровень звукового давления Lp1 на расстоянии r1 от источника шума, то уровень звукового давления Lp2 на расстоянии r2 будет вычисляться так:

Пример: Уровень звукового давление на расстоянии 1 м от установки равно 65 дБ. Тогда уровень звукового давления на расстоянии 10 м от нее равен: (65 — 20*lg10) дБ = (65 — 20) дБ = 45 дБ..

Вообще, в открытом пространстве уровень звукового давления снижается на 6 дБ при увеличении расстояния до источника шума в 2 раза. В помещении зависимость будет сложнее из-за поглощения звука поверхностью пола, отражения звука и т.д.

Громкость шума

Чувствительность человека к звукам разной частоты неодинакова. Она максимальна к звукам частотой около 4 кГц, стабильна в диапазоне от 200 до 2000 Гц, и снижается при частоте менее 200 Гц (низкочастотные звуки).

Громкость шума зависит от силы звука и его частоты. Громкость звука оценивают, сравнивая ее с громкостью простого звукового сигнала частотой 1000Гц. Уровень силы звука частотой 1000Гц, столь же громкого, как измераемый шум, называется уровнем громкости данного шума. На приведенной ниже диаграмме показана зависимость силы звука от частоты при постоянной громкости.

При малом уровне громкости человек менее чувствителен к звукам очень низких и высоких частот. При большом звуковом давлении ощущение звука перерастает в болевое ощущение. На чатоте 1 кГц болевой порог соответствует давлению 20 Па и силе звука 10 Вт/кв.м.

Диаграмма кривых равной громкости

Шумовые характеристики оборудования

Шумовые характеристики оборудования представляют в виде таблиц, где содержатся:

  1. уровень мощности шума в дБ с разбивкой по полосам частот
  2. общий уровень звукового давления

Звуковое давление в помещениях нормируется санитарными нормативами, допустимые значения различны для разных частот. Шум, создаваемый системами вентиляции и кондиционирования, принимают на 5 дБ ниже допустимого уровня шума в помещении (СНиП 11-12-77).

Суммирование источников шума

Шум от нескольких источников не соответствует сумме шумов от каждого источника в отдельности. Для двух находящихся рядом установок шум определяется следующим образом:

  1. Если показатели уровня шума одинаковы, то суммарный уровень шума на 3 дБ превышает уровень шума каждой установки.
  2. Если разница уровней шума превышает 10 дБ, суммарный уровень шума равен величине большего из двух шумов.

Например, общий шум от двух установок с уровнями 30 и 60 дБ, равен 60 дБ.

  • Если разница уровней шума не более 10 дБ, нужно воспользоваться приведенной ниже таблицей. Вычисляем разность уровней шума установок.
  • Например, L1 = 52 дБ, а L2 = 48 дБ. Разность равна 4 дБ. В верхней строке таблицы найдем 4 дБ, тогда в нижней строке видим показатель 1.5 дБ. Прибавим этот показатель к большему уровню шума: 52 дБ + 1.5 дБ = 53.5 дБ. Это и будет общий уровень шума от двух установок.

    Звуковое давление, громкость и динамика звука

    Определение. Динамический диапазон. Соотношение паскалей и децибел, примеры динамических уровней акустических сигналов. Ощущение громкости в зависимости от частоты, понятие фон. Электрические аналоги понятия звукового давления.

    Звуковое давление. Поскольку звуковая волна распространяется в среде в виде зон сжатия и разрежения плотности (рис. 2.2.2), а в газах плотность и давление связаны соотношением р = RTp, где T— температура среды, R — газовая постоянная среды, р — плотность, то в областях сжатия среды давление будет выше статического атмосферного, а в зонах разрежения — ниже. Если поставить в какой-то точке среды измерительный прибор, например микрофон, то он покажет изменение давления при прохождении через эту точку среды звуковой волны (зон сжатия — разрежения) (рис. 2.2.4).

    Разность между мгновенным значением давления в данной точке среды и атмосферным давлением называется звуковым давлением: Pзв= Рмгн-Ратм

    Звуковое давление — величина знакопеременная: в зонах сгущения она положительна, в зонах разрежения отрицательна. Звуковое давление измеряется в паскалях (Па): 1 Па = 1 Н/м2. Слуховая система в состоянии определить огромный диапазон разностей между мгновенным значением звукового давления и атмосферным, которое равно в среднем 100 000 Па. Звуковое давление может оцениваться в пределах от 2 х 10 -5 Па до 20 Па. Таким образом, слуховая система ощущает изменения в атмосферном давлении от 2 х 10 -8 % до 0,02 %, что подтверждает ее необычайную чувствительность.

    Звуковое давление, создаваемое различными звуковыми источниками, приведено в таблице 2.2.2.

    Скорость частиц в среде, где распространяется звуковая волна, зависит от частоты и амплитуды звукового давления (т. е. приложенной силы); если под действием данного звукового давления частицы среды приобретают малую скорость, например в твердых телах, то можно сказать, что данное тело оказывает большое сопротивление приложенному звуковому давлению. Для оценки этого свойства вводится понятие: удельное акустическое сопротивление.

    Удельное акустическое сопротивление среды (импеданс) есть отношение звукового давления к скорости колебаний частиц среды: Z — pv.

    Удельное акустическое сопротивление измеряется в единицах: (Па • с)/м или кг/(с • м2). Значения Z зависят от свойств среды и условий распространения звуковых волн в ней. В общем случае удельное акустическое сопротивление (импеданс) является величиной комплексной, т. е. у него есть активная и реактивная часть. Активная составляющая R определяет величину полезной акустической энергии, излучаемой источником звука в окружающую среду; реактивная составляющая X характеризует потери звуковой энергии.

    Поскольку удельное акустическое сопротивление для воздуха достаточно мало (при температуре 20 о C оно составляет 413 кг/(с*м 2 ), для сравнения: в металле оно равно 47,7 х 10 6 кг/(с*м 2 )), то полезная излучаемая энергия в воздушной среде также мала.

    Следовательно, и коэффициент полезного действия у всех излучателей, работающих на воздух, очень мал. Например, музыкальные инструменты, голосовой аппарат, громкоговорители и др. имеют КПД в пределах 0,2-1%.

    Поскольку звуковая волна переносит энергию механических колебаний, то, следовательно, она может характеризоваться энергетическими параметрами.

    Уровни звукового давления и интенсивности: поскольку человеческий слух различает огромный диапазон изменения звукового давления, то использовать при измерениях такую большую шкалу чрезвычайно неудобно, поэтому во всех измерительных приборах (шумомерах, измерительных компьютерных станциях и др.) используется логарифмическая шкала, которая позволяет сжать масштаб изменения давления.

    Для этого используется уровень звукового давления, который определяется как:

    где р = 2х 10- 5 Па.

    Уровень звукового давления измеряется в децибелах (дБ). Например, если звуковое давление равно р = 2 Па, то уровень звукового давления равен:

    L = 20 Ig р/р= 20 Ig (2 Па/(2 х 10 -5 )Па) = 20 Ig (1 х 1O+ 5 ) = 20 х 5 = 100 дБ.

    Обратный пример: если задан уровень звукового давления L = 80 дБ, то звуковое давление определяется следующим образом: L = 20 Ig р/р, отсюда 80 дБ = 20 Ig р/(2 х 10 -5 ), значит, lg p/(2 x l0 -5 ) = 4. Следовательно 10 4 = р / (2 х 10 -5 ), отсюда значение звукового давления будет равно р = 0,2 Па.

    Увеличение звукового давления в два раза соответствует изменению уровня звукового давления на 6 дБ, например звуковое давление 2 Па соответствует уровню звукового давления 100 дБ, а звуковое давление 1 Па соответствует уровню 94 дБ, звуковое давление 4 Па — уровню 106 дБ, и т. д.

    Кроме того, следует обратить внимание на то, что уровни звукового давления нескольких одновременно работающих различных источников никогда не складываются.

    Например, если играют две скрипки с уровнем 80 дБ и 86 дБ, то их суммарный уровень звукового давления определяется следующим образом: уровню 80 дБ соответствует звуковое давление 0,2 Па, уровню 86 дБ звуковое давление 0,4 Па. В поле сферической волны звуковое давление уменьшается с увеличением расстояния по следующему закону: р

    Суммарное давление равно: р = 0,447 Па, отсюда скрипка и рояль вместе создают уровень звукового давления 86,98 дБ.

    Уровни звукового давления, создаваемые различными источниками, также приведены в таблице 2.2.2.

    В децибелах могут выражаться и другие величины.

    Электрические характеристики (мощность, напряжение, ток) также часто приводятся в децибелах, которые имеют специальные обозначения, например:

    LdBm означает уровень мощности отнесенный к 1 мВт: LdBm=10 lg WВт/1мВт;

    LdBv — уровень напряжения, отнесенный к 1 В (Америка): LdBv = 20 Ig UB/1B;

    LdBu — уровень напряжения, отнесенный к 0,775 В (Европа): LdBu = 20 Ig UB/0,775B.

    Динамический диапазон любого акустического сигнала определяется как отношение максимального значения звукового давления рмах (Па) к минимальному рмин (Па) за время существования сигнала.

    Дифференциальный порог в оценке времени поступления двух следующих друг за другом сигналов составляет 2 мс. Эта величина не сильно зависит от частоты тонального звука, а также от его интенсивности. Однако для определения, какой из сигналов поступает первым, необходимо время в 20 мс.

    Читать еще:  Гипертензия это гипертония

    Интересно отметить, что для распознавания звуков речи (фонем) необходимо время 35 мс, для определения высоты тона требуется также определенное время: для низких частот

    60 мс, для высоких

    Субъективное ощущение, позволяющее слуховой системе располагать звуки по определенной шкале — от звуков низкой интенсивности («тихих») к звукам большой интенсивности («громким»), — называется громкостью.

    Громкость связана прежде всего с таким физическим параметром звукового сигнала как его интенсивность. Интенсивность I и звуковое давление р связаны простым (для плоской волны) соотношением /= р2/рС, где р — плотность воздуха, С — скорость звука.

    громкость зависит не только от интенсивности звука, но и от его частоты, спектрального состава, длительности и др.

    Под уровнем громкости данного звука понимается уровень звукового давления эталонного звука на частоте 1000 Гц, равногромкого данному Уровень громкости измеряется в специальных единицах — фонах.

    Для количественной оценки абсолютной громкости была принята специальная единица сон, которая определяется следующим образом: громкость в 1 сон — это громкость синусоидального звука с частотой 1000 Гц и уровнем 40 дБ.

    93.79.221.197 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

    Отключите adBlock!
    и обновите страницу (F5)

    очень нужно

    Что такое шум? Звуковое давление. Уровень звукового давления

    Что такое шум? Звуковое давление. Уровень звукового давления


    Я ненавижу сплетни в виде версий,

    Червей сомненья, почестей иглу,

    Или — когда все время против шерсти,

    Или — когда железом по стеклу.

    В. Высоцкий

    Многие из нас прекрасно понимают, какие звуки являются неприятными и даже болезненными, а какие успокаивающими и умиротворяющими. Так, мало у кого вызовет радость и расслабление звук, создаваемый от трения гвоздем или пенопластом по стеклу. Не всем находят гармонию в звуках рок-концерта или взлетающего сверхзвукового самолета. В то же время, шум дождя и листвы, журчание ручья и пение птиц вызывает, преимущественно, положительные эмоции. Все дело в том, какие именно звуки (звуковые волны) человеческое ухо воспринимает как шум. Что же такое шум?

    Что такое шум?

    Шум (еще — акустический шум) — колебания частиц окружающей среды, воспринимаемые органами слуха человека как нежелательные, дискомфортные сигналы. В физическом понимании акустический шум — это случайные или нестойкие колебания, характеризующиеся изменяемой частотой и амплитудой. Изначально само слово «шум» относилось исключительно к различным звуковым колебаниям, однако на сегодняшний день это понятие распространено на другие вилы колебаний (электрические и радиоколебания). Если говорить просто, то шум — это любой звук, который воспринимается человеком как неблагоприятный.

    Звуковая волна имеет определенные параметры, к которым можно отнести скорость распространения звука в разных средах и уровень звукового давления. Они существенно влияют на наше восприятие звука (звуковой волны), а также на порог слышимости. Есть ряд звуковых частот, которые не воспринимаются нашими органами слуха. Это низкие частоты (инфразвук) и высокие частоты (ультразвук), улавливаемые внутренними органами человека на уровне «тонкого восприятия».

    Статистика. Согласно социальным исследованиям, более 13% взрослых людей от 18 до 40 лет при современном темпе жизни ежегодно получают порцию шума, в несколько раз превышающую норму, что негативно сказывается на здоровье. Длительное воздействие звуковой волны при уровне 85-90 дБ негативно влияет на слух человека. Мощность акустических систем на концертах и других массовых мероприятиях составляет несколько десятков киловатт. Столь интенсивная звуковая волна может привести не только к нарушению слуха, но и к патологическим изменениям нервной и сердечно-сосудистой систем.

    В отличие от света, звук распространяется намного медленнее. Скорость распространения звуковой волны в воздушном пространстве — 330 м/с. В зависимости от структуры и плотности вещества зависит изменение скорости звуковой волны: именно поэтому в твердых телах и жидкостях скорость звука в несколько раз выше. Так, звук в воде распространяется со скоростью 1400 м/с, в листе стали — 4900 м/с.

    Звуковое давление. Уровень звукового давления

    Далее — о звуковом давлении. Уровнем звукового давления называется ощущаемая интенсивность шума, которая измеряется в дБ (децибелах). Высчитать уровень звукового давления можно, если знать уровень мощности шума, а также расстояние до источника звука. В открытом пространстве действуют одни законы, так как звук распространяется свободно. В замкнутом пространстве звук может отражаться от стен, мебели, других поверхностей, а также поглощаться некоторыми поверхностями. Кроме того, чем дальше мы находимся от источника звука, тем меньшее звуковое давление испытываем.

    Таким образом, приобретая бытовые приборы, обязательно ознакомьтесь в техническом паспорте изделия, каков уровень звукового давления того или иного устройства, а также где следует установить оборудование, чтобы оно было максимально безопасным для домочадцев. Желательно, чтобы звуковое давление в дБ не превышало допустимого для бытовой техники 60-65 дБ. Наиболее комфортно в помещении, где уровень акустического шума от работающих приборов не превышает 25-35 дБ. Такой шум не ощущается как заметный, явный или утомительный, поэтому он является предельно допустимым для офисов, конструкторских бюро, технологических мастерских, читальных залов и других помещений для умственного труда.

    Измерение звукового давления

    Следует отметить, что длительная шумовая перегрузка существенно влияет на внутреннее состояние человека, а также его эмоциональную устойчивость. Повышенная раздражительность наблюдается в офисах (и на других рабочих местах), где уровень давления звуковой волны превышает допустимый.

    Как понять, насколько шум внутри помещения приближен к норме (или же отдален от нее)?

    Безусловно, можно довериться ощущениям: ведь высокий акустический шум вызывает, несомненно, сильный дискомфорт. Однако, существует ряд приборов (фонометров), с помощью которых можно определить уровень звукового давления. Для измерения шумовых характеристик применяются шумомеры — компактные приборы с цифровым табло, где отображаются показания уровня шума в том или ином помещении.

    Замер звукового давления при помощи шумомера происходит следующим образом. Приборы оснащены широкополосным микрофоном, усилителем, корректирующими фильтрами, детекторами и цифровым индикатором. Микрофон шумомера подключен к вольтметру, который отградуирован в децибелах. Звуковой сигнал, фиксируемый микрофоном, преобразуется в электрический сигнал. Поэтому уровень звукового давления, которое воздействует на мембрану микрофона, вызывает увеличение напряжения электрического тока на входе в вольтметр. Соответственно, уровень напряжения отображается на индикаторе (в децибелах).

    Помимо измерений, расчет звукового давления может быть произведен по стандартным физическим формулам при заданных показателях.

    Допустимые уровни звукового давления

    Многие до сих пор наивно полагают, что нет ничего страшного в прослушивании громкой музыки, «бьющей» по барабанным перепонкам из привычных наушников. Однако, в этом вопросе нельзя быть халатным и относиться к своему здоровью пренебрежительно. Высокий уровень шума существенно влияет на нормальное восприятие окружающих звуков. Постоянный шум на рабочем месте, беспрерывное ношение наушников, «шум» мегаполиса (мест т.н. «отдыха»), регулярные поездки в переполненном метро — все это может привести как к частичной, так и полной потере слуха.

    Некоторые возразят: от одного прослушивания музыки или шума городского транспорта еще ни с кем ничего не случилось. Полностью согласны. Однако регулярное шумовое воздействие дает негативному эффекту накапливаться, приводя к серьезным нарушениям слуха. Особенно это актуально в том случае, если организм ослаблен болезнью или стрессом.

    Статистика. По проведенным социальным опросам, более 75% молодежи регулярно слушают громкую музыку или посещают клубы, где подвергаются внушительным «дозам» шумового воздействия. При этом почти 20% респондентов считают, что шум не может оказывать серьезного влияния на их слух. 10% молодежи в принципе не знали о существовании подобной проблемы.

    К слову сказать, высокое звуковое давление может привести не только к временной глухоте, контузии или даже серьезным травмам (разрушению барабанных перепонок). Так, максимальное звуковое давление, которое способен выдержать человек, не получив при этом травму, составляет 120-125 дБ.

    Длительное сильное звуковое воздействие становится причиной появления тиннитуса — внутреннего шума в голове, «звона» в ушах, который может вызвать прогрессирующее снижение слуха. Чаще всего специфический «звон» в ушах после длительной звуковой нагрузки появляется у людей, старше 30 лет, особенно в том случае, когда организм ослаблен стрессами, вредными привычками.

    Таким образом, собираясь на вечеринку в кафе или клуб, предварительно подумайте о том, насколько комфортно будет вам в выбранном заведении. И если владельцы клуба предпочитают громкую музыку, то не задерживайтесь в кафе слишком долго.

    Ссылка на основную публикацию
    Adblock
    detector