Давление в вентиляции
Давление воздуха в системах вентиляции
В каждом произвольном поперечном сечении воздуховода по которому движется воздух возникает статическое, динамическое, полное давление.Статическое давление хар-ет потенциальную энергию воз-ха и равно давлению на стенках воздуховода.
Динам.дав-е явл-ся проявлением кинетической энергии воздушного потока,велечину которого определяют по формуле = * ,Па
где -скорость движения воз-ха,м/с
-плотность воз-ха
Полное давление представляет собой сумму статического и динамического давления:
При движении по воздуховоду воздух теряет свою энергию на преодоления сопротивлений, т.е. происходит потеря давления. Различают два вида потерь давления: потеря давления на трения и потеря на местные сопротивления.
Потери давления на трение в воздуховодах:
Для круглых воздуховодов существует ф-ла подсчета потерь p из-за трения , где -коэф. сопротивления трению, l-длина воздуховода, v-скорость течения воздуха,d-диаметр воздуховода,м;
Для квадратного или прямоугольного сечения ф-ла имеет тот же вид только рассчитывается эквивалентный диаметр по сторонам воздуховода
Потери давлений в местных сопротивлениях:
Рассчитывают по ф-ле: , — сумма коэф-ов местных сопротивлений на уч-ке воздуховода (отводы, переходы, тройники, крестовины..) Значения местных сопротивлений определяют по таблицам справочной литературы.
25.Как видно из рисунка со всасывающей стороны в сечении А всасывающего воздуховода 1 разряжение практически равно нулю. В пределах спектрах всасывания у торца воздуховода 1 развивается некоторое динамическое давление. Поскольку в любом сечении всасыв-го воздуховода статическое и полное давление имеет отрицательный, а динамическое давление положительный знак ,то линия статического давления 7 расположена ниже линии полного давления 6.Заметный скачок вниз линии статического давления 7 после сечения А вызван сужением воздушного потока на входе в воздуховод из-за возникновения местных завихрений .Между сечениями Б и В нах-ся конфузор с поворотом, в котором увел-ся скорость потока и возростает потеря давления. В следствии этого на данном участке снижается линия статического давления 7.В точке Ж создаётся наибольшее по абсолютному значению полное давление во всасываемом воздуховоде равное:
Между сечениями Г и Д нах-ся диффузор (расширитель) в котором происходит уменьшение скорости потока,что вызывает увеличение статического давления 5 и уменьшения динамического давления .
В сечении Д статическое давление приобретает max значение и равно потерям давления на трение между сечениями Д и Е.По мере приближения к сечению Е статическое давление уменьшается,а динамическое остаётся const.На выходе из нагнетательного воздуховода в сечении Е статическое давление равно нулю,динамическое сохраняет свою велечину.В любом сечении нагнетательного воздуховода статическое и полное давление имеют положительный знак,в точке 3 образуется наибольшее полное давление создаваемое вентилятором и определяется по формуле: :
Значение полных давление соответственно равны потерям давления во всасывающем и нагнетательном воздуховоде.
Давление развиваемое вентилятором расходуется на преодоление сопротивлению движению воздуха по воздуховодам и равно:
Вентпортал
Опубликовано чт, 01/27/2011 — 12:26 пользователем editor
Сопротивление прохождению воздуха в вентиляционной системе, в основном, определяется скоростью движения воздуха в этой системе. С увеличением скорости возрастает и сопротивление. Это явление называется потерей давления. Статическое давление, создаваемое вентилятором, обуславливает движение воздуха в вентиляционной системе, имеющей определенное сопротивление. Чем выше сопротивление такой системы, тем меньше расход воздуха, перемещаемый вентилятором. Расчет потерь на трение для воздуха в воздуховодах, а также сопротивление сетевого оборудования (фильтр, шумоглушитель, нагреватель, клапан и др.) может быть произведен с помощью соответствующих таблиц и диаграмм, указанных в каталоге. Общее падение давления можно рассчитать, просуммировав показатели сопротивления всех элементов вентиляционной системы.
Рекомендуемая скорость движения воздуха в воздуховодах:
Определение скорости движения воздуха в воздуховодах:
V= L / 3600*F (м/сек)
где L – расход воздуха, м3/ч; F – площадь сечения канала, м2.
Рекомендация 1.
Потеря давления в системе воздуховодов может быть снижена за счет увеличения сечения воздуховодов, обеспечивающих относительно одинаковую скорость воздуха во всей системе. На изображении мы видим, как можно обеспечить относительно одинаковую скорость воздуха в сети воздуховодов при минимальной потере давления.
Рекомендация 2.
В системах с большой протяженностью воздуховодов и большим количеством вентиляционных решеток целесообразно размещать вентилятор в середине вентиляционной системы. Такое решение обладает несколькими преимуществами. С одной стороны, снижаются потери давления, а с другой стороны, можно использовать воздуховоды меньшего сечения.
Пример расчета вентиляционной системы:
Расчет необходимо начать с составления эскиза системы с указанием мест расположения воздуховодов, вентиляционных решеток, вентиляторов, а также длин участков воздуховодов между тройниками, затем определить расход воздуха на каждом участке сети.
Выясним потери давления для участков 1-6, воспользовавшись графиком потери давления в круглых воздуховодах, определим необходимые диаметры воздуховодов и потерю давления в них при условии, что необходимо обеспечить допустимую скорость движения воздуха.
Участок 1: расход воздуха будет составлять 220 м3/ч. Принимаем диаметр воздуховода равным 200 мм, скорость – 1,95 м/с, потеря давления составит 0,2 Па/м х 15 м = 3 Па (см. диаграмму определение потерь давления в воздуховодах).
Участок 2: повторим те же расчеты, не забыв, что расход воздуха через этот участок уже будет составлять 220+350=570 м3/ч. Принимаем диаметр воздуховода равным 250 мм, скорость – 3,23 м/с. Потеря давления составит 0,9 Па/м х 20 м = 18 Па.
Участок 3: расход воздуха через этот участок будет составлять 1070 м3/ч. Принимаем диаметр воздуховода равным 315 мм, скорость 3,82 м/с. Потеря давления составит 1,1 Па/м х 20= 22 Па.
Участок 4: расход воздуха через этот участок будет составлять 1570 м3/ч. Принимаем диаметр воздуховода равным 315 мм, скорость – 5,6 м/с. Потеря давления составит 2,3 Па х 20 = 46 Па.
Участок 5: расход воздуха через этот участок будет составлять 1570 м3/ч. Принимаем диаметр воздуховода равным 315 мм, скорость 5,6 м/с. Потеря давления составит 2,3 Па/м х 1= 2,3 Па.
Участок 6: расход воздуха через этот участок будет составлять 1570 м3/ч. Принимаем диаметр воздуховода равным 315 мм, скорость 5,6 м/с. Потеря давления составит 2,3 Па х 10 = 23 Па. Суммарная потеря давления в воздуховодах будет составлять 114,3 Па.
Когда расчет последнего участка завершен, необходимо определить потери давления в сетевых элементах: в шумоглушителе СР 315/900 (16 Па) и в обратном клапане КОМ 315 (22 Па). Также определим потерю давления в отводах к решеткам (сопротивление 4-х отводов в сумме будут составлять 8 Па).
Определение потерь давления на изгибах воздуховодов
График позволяет определить потери давления в отводе, исходя из величины угла изгиба, диаметра и расхода воздуха.
Пример. Определим потерю давления для отвода 90° диаметром 250 мм при расходе воздуха 500 м3/ч. Для этого найдем пересечение вертикальной линии, соответствующей нашему расходу воздуха, с наклонной чертой, характеризующей диаметр 250 мм, и на вертикальной черте слева для отвода в 90° находим величину потери давления, которая составляет 2Па.
Принимаем к установке потолочные диффузоры серии ПФ, сопротивление которых, согласно графику, будет составлять 26 Па.
Теперь просуммируем все величины потери давления для прямых участков воздуховодов, сетевых элементов, отводов и решеток. Искомая величина 186,3 Па.
Мы рассчитали систему и определили, что нам нужен вентилятор, удаляющий 1570 м3/ч воздуха при сопротивлении сети 186,3 Па. Учитывая требуемые для работы системы характеристики нас устроит вентилятор требуемые для работы системы характеристики нас устроит вентилятор ВЕНТС ВКМС 315.
Полное, статическое и динамическое давление. Измерение давления в воздуховодах систем вентиляции
Полное, статическое и динамическое давление
При движении воздуха по ВВ в любом поперечном сечении различают 3 вида давления:
Статическое давление определяет потенциальную энергию 1 м 3 воздуха в рассматриваемом сечении. Оно равно давлению на стенки воздуховода. .
Динамическое давление – кинетическаяя энергия потока, отнесенная к 1 м 3 воздуха.
– плотность воздуха,
— скорость воздуха, м/с.
Полное давление равно сумме статического и динамического давления.
Принято пользоваться значением избыточного давления, принимая за условный ноль атмосферное давление на уровне системы. В нагнетательных воздуховодах полное и статическое избыточное давление всегда «+», т.е. давление > . Во всасывающих воздуховодах полное и статическое избыточное давление «-».
Измерение давления в воздуховодах систем вентиляции
Давление в ВВ измеряется при помощи пневмометрической трубки и какого-либо измерительного прибора: микроманометра либо др.прибора.
Для нагнетательного воздуховода:
статическое давление – трубку статического давления к бачку микроманометра;
полное давление – трубку полного давления к бачку микроманометра;
динамическое давление – трубку полного давления к бачку, а статического – к капилляру микроманометра.
Для всасывающего воздуховода:
статическое давление – трубку статического давления к капилляру манометра;
полное давление – трубку полного давления к капилляру микроманометра;
динамическое давление – трубку полного давления к бачку, а статического – к капилляру микроманометра.
Схемы измерения давления в воздуховодах.
Билет №10
Потери давления в системах вентиляции
При движении по ВВ воздух теряет свою энергию на преодоление различных сопротивлений, т.е. происходят потери давления.
Потери давления на трение
– коэффициент сопротивления трения. Зависит от режима движения жидкости по воздуховоду.
— кинематическая вязкость, зависит от температуры.
При ламинарном режиме:
при турбулентном движении зависит от шероховатости поверхности трубы. Применяются различные формулы и широко известна формула Альтшуля:
– абсолютная эквивалентная шероховатость материала внутренней поверхности воздуховода, мм.
Для листовой стали 0,1мм; силикатобетонные плиты 1,5 мм; кирпич 4 мм, штукатурка по сетке 10 мм
Удельные потери давления
В инженерных расчетах пользуются специальными таблицами, в которых приводят значения для круглого воздуховода. Для воздуховодов из других материалов вводится поправочный коэффициент и равно:
.
Значение поправочного коэффициента приводится к справочнике в зависимости от вида материала и от скорости перемещения воздуха по воздуховоду.
Для прямоугольных воздуховодов за расчетную величину d принимают эквивалентныйdэк, при которой потери давления в круглом воздуховоде при той же скорости будут равны потерям давления в прямоугольном воздуховоде:
— стороны прямоугольного воздуховода.
Следует иметь в виду: расход воздуха прямоугольного и круглого воздуховодов с при равенстве скоростей не совпадает.
Дата добавления: 2018-02-18 ; просмотров: 9952 ; ЗАКАЗАТЬ РАБОТУ
РАСПРЕДЕЛЕНИЕ ДАВЛЕНИЙ В СИСТЕМАХ ВЕНТИЛЯЦИИ
Распределение давлений в системе вентиляции необходимо знать при наладке и регулировании системы, при определении расходов на отдельных участках системы и при решении многих других вентиляционных задач.
Распределение давлений в системах вентиляции с механическим побуждением движения воздуха. Рассмотрим воздуховод с вентилятором (рис. XI.3). В сечении 1—/ статическое давление равно нулю (т. е. равно давлению воздуха на уровне расположения воздуховода). Полное давление в этом сечении равно динамическому давлению рді, определяемому по формуле (XI.1). В сечении II—II статическое давление рстіі>0 (численно равно потерям давления на трение между сечениями II—II и I—/). При постоянном сечении воздуховода линия статического давления — прямая. Линия полного давления также прямая,
Параллельная линии рст. Расстояние между этими линиями по вертикали определяет динамическое давление рДі.
В диффузоре, расположенном между сечениями II—II и III—III, происходит изменение скорости потока. Динамическое давление по ходу воздуха уменьшается. В связи с этим статическое давление изменяется и может даже возрасти, как это показано на рисунке (рстіі>рстііі).
Полное давление в сечении III—III, создаваемое вентилятором, теряется на трение Дртр и в местных сопротивлениях (диффузоре Лрдиф, при выходе Арных). Общие потери давления со стороны нагнетания равны:
АРнагн = (ЯМ + г)иагн. (XI .23)
Рис XI3. Схема распределения давлений в вентиляционной системе
1—всасывающий воздуховод; 2—вентилятор; 3 — нагнетательный воздуховод; 4 — линия полного давления с нагнетательной стороны, 5 —линия статического давления там же, 6 — линия полного давления с всасывающей стороны; 7 —линия статического давления там же, I—VI — номера сечений (остальные обозначения даны в тексте)
Статическое давление вне воздуховода со стороны всасывания равно нулю. В непосредственной близости от отверстия в пределах всасывающего факела поток воздуха уже обладает кинетической энергией. Разрежение в пределах всасывающего факела незначительно.
На входе в воздуховод скорость потока увеличивается, а значит увеличивается и кинетическая энергия потока. Следовательно, по закону сохранения энергии потенциальная энергия потока должна уменьшиться. С учетом потерь давления Л/?ПОт в любом сечении со стороны всасывания
Per = 0 — рд — Дрпот — (XI. 24)
Во всасывающем воздуховоде так же, как и со стороны нагнетания, полное давление равно разности давления в начале воздуховода и потерь давления до рассматриваемого сечения:
Рп = 0-ДрпОт. (XI.25)
Из формул (XI.24) и (XI.25) следует, что в каждом сечении воздуховода со стороны всасывания величины р0т и рп меньше нуля. По абсолютному значению статическое давление больше полного давления, однако формула (XI.2) справедлива и для этого случая.
Линия статического давления идет ниже линии полного давления. Резкое понижение линии статического давления после сечения VI—VI объясняется сужением потока на входе в воздуховод вследствие образования вихревой зоны. Между сечениями V—V и IV—IV на схеме показан конфузор с поворотом. Снижение линии статического давления между этими сечениями происходит вследствие увеличения как скорости потока в конфузоре, так и потерь давления. Эпюры статического давления на рис. XI.3 заштрихованы.
В точке Б наблюдается наименьшее в системе воздуховодов значение полного давления. Численно оно равно потерям давления со стороны всасывания:
Дрвс = (ЯРшИ-г)пс. (XI. 26)
Рис. XI.4, Схемы измерения давлений в воздуховодах
А — полного и статического в нагнетательном воздуховоде; б — то же, во всасывающем воздуховоде; в — динамического в нагнетательном воздуховоде; г — динамического во всасывающем воздуховоде
Вентилятор создает перепад давления, равный разности максимального и минимального значения полного давления (рлл — Рпб )> увеличивая энергию 1 м3 воздуха, проходящего через него, на величину
Давление, создаваемое вентилятором, затрачивается на преодоление сопротивления движению воздуха по воздуховодам:
Рвеит = ДРвс + Дрнагн. (XI. 27)
Профессор П. Н. Каменев предложил строить эпюры давлений на всасывающем воздуховоде от абсолютного нуля дав’лений (абсолютного вакуума). При этом построение линий рст. абс и рп. абс полностью соответствует случаю нагнетания.
Давления в воздуховодах измеряют микроманометром. Для измерения статического давления шланг от микроманометра присоединяют к штуцеру, прикрепленному к стенке воздуховода, а для измерения полного давления — к пневмометрической трубке Пито, отверстие которой направлено навстречу потоку (рис. XI.4, а, б).
Разность полного и статического давлений равна значению динамического давления. Эту разность можно замерить непосредственно микроманометром, как это показано на рис. XI.4, в, г. По значению рд определяют скорость, м/с:
V = V2prfp, (XI. 28)
По которой вычисляют расход воздуха в воздуховоде, м3/ч:
Распределение давлений в системах вентиляции с естественным побуждением движения воздуха. Особенностями таких систем являются вертикальное расположение их каналов в здании, малые значения располагаемых давлений и, следовательно, небольшие скорости. Работа систем с естественным побуждением движения воздуха зависит от конструктивных особенностей системы и здания, разности плотности наружного и внутреннего воздуха, скорости и направления ветра. Однако при выборе конструктивных размеров отдельных элементов системы вентиляции (сечений каналов и шахт, площадей жалюзийных решеток) достаточно провести расчет для случая, когда здание не оказывает влияния на работу вентиляции.
Рис. XI5. Схемы распределения давлений в системах вентиляции с вертикальными каналами
А — эпюры абсолютных аэростатических давлений в канале, закрытом заглушками 1 — внутри канала; 2 — снаружи канала; б — эпюра избыточных давлений в том же канале; в — эпюры избыточных давлений прн движении воздуха по каналу; г — эпюры избыточных давлений в шахте и в присоединенном к ней «широком канале»; д—эпюры избыточных давлений в канале и шахте при наличии ответвления; е — эпюры избыточных давлений при естественном побуждении движения воздуха в системе вентиляции многоэтажного здания; ж — эпюры избыточных давлений при механическом побуждении движения воздуха; (рст> Рп
линии соответственно статического н полного давления внутри канала и шахты; Рн — линия статического давления снаружи канала н шахты)
Рассмотрим простейший случай, когда вертикальный канал высотой Як, заполненный теплым воздухом с температурой tB, закрыт сверху и снизу заглушками. Канал окружен наружным воздухом с температурой ta.
Предположим, что давление внутри и снаружи канала на уровне его верха равно ра (для обеспечения этого условия достаточно оставить в верхней заглушке небольшое отверстие). Тогда в соответствии с законом Паскаля абсолютное давление на любом уровне (на расстоянии h от верха канала) равно: снаружи рст н=ра4-^рн£, а внутри рстк=ра4- —hpBg. Распределение абсолютных давлений внутри канала (линия 1) и снаружи него (линия 2) показано на рис. XI.5, а.
В системе «канал — окружающий воздух» можно пользоваться условными значениями избыточных давлений, т. е. условно принять аэростатическое давление внутри канала на любом уровне за нуль. Эпюра этих давлений снаружи канала имеет форму треугольника (рис. XI.5,6J. Основанием треугольника
Является располагаемое давление, Па, определяющее движение воздуха по каналу.
При движении воздуха по каналу (рис. XI.5, в) потери давления складываются из потерь на входе, на трение и на выходе. На рис. XI.5, в показано распределение полного и статического давлений (в избыточных относительно условного нуля давлениях). Динамическое давление рд равно разности рп и рст. Статическое давление (эпюра его на рисунке заштрихована) по всей длине канала меньше избыточного аэростатического давления снаружи канала рн. В некоторых случаях в канале могут наблюдаться ЗОНЫ С Рст >рн. Например, в канале перед сужением (рис. XI.5, г) при определенных условиях статическое давление может превышать давление рн. Через неплотности в этой зоне канала будет происходить утечка загрязненного воздуха.
Если вертикальный вентиляционный канал объединяет два (рис. XI, 5,(3) или более (рис. XI.5, е) ответвлений, то рекомендуется присоединять их не на уровне входа воздуха в ответвление, а несколько выше (на один, два этажа и более). Эта рекомендация дана с учетом накопленного опыта эксплуатации. При присоединении ответвления на уровне точки А вместо уровня точки Б увеличивается располагаемое давление Дротв (см. рис. XI.5, д); следовательно, увеличивается также сопротивление канала и устойчивость работы системы.
На рис. XI.5, д, е эпюры статического давления заштрихованы. Полное давление убывает по высоте до значения потерь на выходе, а динамическое давление при постоянном сечении канала увеличивается по высоте, так как после присоединения ответвления расход в канале увеличивается.
В последнее время внедряются системы вентиляции с вертикальными каналами и механическим побуждением движения воздуха. В этих системах воздух движется под действием вентилятора и гравитационных сил. Построение распределения давлений в таких системах аналогично рассмотренному выше. Особенность заключается в том, что статическое давление перед вентилятором определяется разрежением, создаваемым вентилятором (см. схему на рис. XI.5,ж). В этом случае располагаемое давление для движения воздуха в системе
Расчет потери напора воздуха в системе вентиляции
Главное требование ко всем типам систем вентиляции – обеспечивать оптимальную кратность обмена воздуха в помещениях или конкретных рабочих зонах. С учетом этого параметра проектируется внутренний диаметр воздуховода и подбирается мощность вентилятора. Для того чтобы гарантировать требуемую эффективность функционирования системы вентиляции, выполняется расчет потерь давления напора в воздуховодах, эти данные принимаются во внимание во время определения технических характеристик вентиляторов. Показатели рекомендуемой скорости воздушного потока указаны в таблице № 1.
Табл. № 1. Рекомендованная скорость движения воздуха для различных помещений
Исходя из этих значений следует рассчитывать линейные параметры воздуховодов.
Алгоритм расчета потерь напора воздуха
Расчет нужно начинать с составления схемы системы вентиляции с обязательным указанием пространственного расположения воздуховодов, длины каждого участка, вентиляционных решеток, дополнительного оборудования для очистки воздуха, технической арматуры и вентиляторов. Потери определяются вначале по каждой отдельной линии, а потом суммируются. По отдельному технологическому участку потери определяются с помощью формулы P = L×R+Z, где P – потери воздушного давления на расчетном участке, R – потери на погонном метре участка, L – общая длина воздуховодов на участке, Z – потери в дополнительной арматуре системы вентиляции.
Для расчета потерь давления в круглом воздуховоде используется формула Pтр. = (L/d×X) × (Y×V)/2g. X – табличный коэффициент трения воздуха, зависит от материала изготовления воздуховода, L – длина расчетного участка, d – диаметр воздуховода, V – требуемая скорость воздушного потока, Y – плотность воздуха с учетом температуры, g – ускорение падения (свободного). Если система вентиляции имеет квадратные воздуховоды, то для перевода круглых значений в квадратные следует пользоваться таблицей № 2.